• Home
  • Fresh Content
  • Courses
  • Resources
  • Podcast
  • Talks
  • Publications
  • Sponsorship
  • Testimonials
  • Contact
  • Menu

Jon Krohn

  • Home
  • Fresh Content
  • Courses
  • Resources
  • Podcast
  • Talks
  • Publications
  • Sponsorship
  • Testimonials
  • Contact
Jon Krohn

Gradient Boosting: XGBoost, LightGBM and CatBoost, with Kirill Eremenko

Added on April 2, 2024 by Jon Krohn.

You wanted more of Kirill Eremenko, now you've got it! Kirill returns to the show today to detail Decision Trees, Random Forests and all three of the leading gradient-boosting algorithms: XGBoost, LightGBM and CatBoost 😸

If you don’t already know him, Kirill: 
• Is Founder and CEO of SuperDataScience, an e-learning platform that is the namesake of this very podcast.
• Launched the SuperDataScience Podcast in 2016 and hosted the show until he passed me the reins four years ago.
• Has reached more than 2.7 million students through the courses he’s published on Udemy, making him Udemy’s most popular data science instructor.

Today’s episode is a highly technical one focused specifically on Gradient Boosting methods and the foundational theory required to understand them. I expect this episode will be of interest primarily to hands-on practitioners like data scientists, software developers and machine learning engineers.

In this episode, Kirill details: 
• Decisions Trees.
• How Decision Trees are ensembled into Random Forests via Bootstrap Aggregation.
• How the AdaBoost algorithm formed a bridge from Random Forests to Gradient Boosting.
• How Gradient Boosting works for both regression and classification tasks.
• All three of the most popular Gradient Boosting approaches — XGBoost, LightGBM and CatBoost — as well as when you should choose them.

The SuperDataScience podcast is available on all major podcasting platforms, YouTube, and at SuperDataScience.com.

In Data Science, Podcast, SuperDataScience, YouTube Tags superdatascience, machine learning, decision trees, gradient boosting
← Newer: In Case You Missed It in March 2024 Older: The Neuroscientific Guide to Confidence →
Back to Top