With all of this ChatGPT and GPT-4 news, I was wondering whether these generative A.I. tools actually result in the productivity gains everyone supposes them to. Well, wonder no more…
Read MoreFiltering by Tag: DataScience
Is Data Science Still Sexy?
Had far too much fun filming today's episode with Prof. Tom Davenport, many-time author of bestselling books on analytics and coiner of data science as "sexiest job of the century". A decade on, does he still think so?
Tom:
• Has published over 20 books, such as the bestselling "Competing on Analytics", "The A.I. Advantage", and "Analytics at Work".
• Has penned 300+ articles in publications like the Harvard Business Review and writes regular columns for Forbes and The Wall Street Journal.
• Is President's Distinguished Professor of IT and Management at Babson College.
• Is Visiting Professor at the Saïd Business School, University of Oxford.
• Is Senior Advisor to the A.I. practice for the global professional services giant Deloitte.
• With nearly 300k followers, he’s recognized as a LinkedIn Top Voice.
Today’s episode is equally well-suited to technical and non-technical listeners alike. Every part of it should be appealing to anyone who’s keen to hear about the leading edge of commercial applications of A.I.
In this episode, Prof. Davenport details:
• The discrete A.I. maturity levels of organizations.
• How organizations become A.I. fueled.
• Which jobs are susceptible to replacement by A.I.
• Which jobs are ripe for augmenting with A.I.
• What roles other than data scientist are required to deploy effective machine learning models.
• What the future of data science will look like and, having coined data science as “the sexiest job of the 21st century” a decade ago, whether he still thinks it is today.
The SuperDataScience podcast is available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
Data Science Trends for 2023
Happy New Year! To kick it off, the entrepreneur, futurist, and mega-popular Machine Learning instructor Sadie St. Lawrence joins me to predict the biggest data science trends of 2023 🍾
We start the episode off by looking back at how our predictions for 2022 panned out from a year ago and then we dive into our predictions for the year ahead. Specific trends we discuss include:
• Data as a product
• Multimodal models
• Decentralization of enterprise data
• A.I. policy
• Environmental sustainability
This episode will appeal to technical and non-technical folks alike — anyone who’d like to understand the trends that will shape the field of data science and the broader world not only in 2023 but also in the years beyond.
Sadie:
• Has created data science and ML courses enjoyed by 350k+ students.
• Is Founder and CEO of Women In Data, a community of over 20k women across 17 countries.
• Serves on multiple start-up boards.
• Hosts the Data Bytes podcast.
The SuperDataScience podcast is available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
Simplifying Machine Learning
Today, Mariya Sha — host of the wildly popular "Python Simplified" YouTube channel (140k subscribers!) — taps her breadth of A.I. expertise to provide a fun and fascinating finale to SuperDataScience guest episodes for 2022.
Mariya:
• Is the mind behind the "Python Simplified" YouTube channel that makes advanced concepts (e.g., ML, neural nets) simple to understand.
• Her videos cover Python-related topics as diverse as data science, web scraping, automation, deep learning, GUI development, and OOP.
• Is renowned for taking complex concepts such as gradient descent or unsupervised learning and explaining them in a straightforward manner that leverages hands-on, real-life examples.
• Is pursuing a bachelor's in Computer Science (with a specialization in A.I. and Machine Learning) from the University of London.
Today’s episode should appeal to anyone who’s interested in or involved with data science, machine learning, or A.I.
In this episode, Mariya details:
• How the incredible potential of ML in our lifetimes inspired her to shift her focus from web-development languages like JavaScript to Python.
• Why automation and web scraping are critical skills for data scientists.
• How to make learning any apparently complex data science concept straightforward to comprehend.
• Her favorite Python libraries and software tools.
• One rarely-mentioned topic that every data scientist would benefit from.
• The pros and cons of pursuing a 100% remote degree in computer science.
The SuperDataScience podcast is available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
How to Influence Others with Your Data
If you ever use data to make decisions or to persuade those around you to make data-driven decisions, today’s episode is jam-packed with relevant, practical tips from data presentation guru Ann K. Emery.
Ann:
• Is an internationally-acclaimed speaker who delivers 100+ keynotes, workshops, and webinars each year to enable people to share data-driven insights more effectively.
• She has consulted on data visualization, data reporting, and data presentation with over 200 organizations — the likes of the United Nations, the US Centers for Disease Control, and Harvard University.
• She holds a BA in Psychology and Spanish from the University of Virginia and a Masters in Educational Psychology Evaluation, Assessment, and Testing from George Mason University.
I rarely say that everyone should listen to an episode, but this is one of those rare cases.
In this episode, Ann details:
• What data storytelling is.
• Best practices for data visualization.
• Surprising tricks you can pull off with spreadsheet software.
• How to report on data effectively.
• Her top tips for presenting data in a slideshow.
The SuperDataScience podcast is available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
Liquid Neural Networks
Liquid Neural Networks are a new, biology-inspired deep learning approach that could be transformative. I think they're super cool and Adrian Kosowski, PhD introduced them to me for today's Five-Minute Friday episode.
The SuperDataScience podcast is available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
Data Analytics Career Orientation
Considering a Data Analytics career? Today's episode with YouTube icon Luke Barousse (273k subscribers) will be particularly appealing to you, but the terrifically interesting guest makes for an episode that anyone will love.
Luke:
• Is a full-time YouTuber, creating highly educational — but nevertheless hilarious — videos focused on Data Analytics.
• Previously worked as a Lead Data Analyst and Data Engineer at BASF.
• Worked for seven years in the US Navy on nuclear-powered submarines.
• Holds a degree in mechanical engineering, a graduate qualification in nuclear engineering, and an MBA in business analytics.
In this episode, Luke details:
• The must-have skills for entry-level data analyst roles.
• The data analyst skills mistakenly and erroneously pursued by many folks considering the career.
• How his submariner experience prepared him well for a data career.
• His favorite tools for creating interactive data dashboards.
• His favorite scraping libraries for collecting data from the web.
• The skills to learn now to be prepared for the data careers of the future.
• The benefits of CrossFit beyond just the fitness improvements.
The SuperDataScience podcast is available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
Resilient Machine Learning
Machine learning is often fragile in production. For today's Five-Minute Friday episode, Dr. Dan Shiebler details how we can make ML more resilient.
The SuperDataScience podcast is available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
Software for Efficient Data Science
In today's episode, Dr. Jodie Burchell details a broad range of tools for working efficiently with data, including data cleaning, reproducibility, visualization, and natural language processing.
Jodie:
• Is the Data Science Developer Advocate for JetBrains, the developer-tools company behind PyCharm (one of the most widely-used Python IDEs) and DataLore (their new cloud platform for collaborative data science).
• Previously was Data Scientist or Lead Data Scientist at several tech companies, developing specializations in search, recommender systems, and NLP.
• Co-authored two books on data visualization libraries: "The Hitchhiker's Guide to ggplot2" and "The Hitchhiker's Guide to Plotnine".
• Prior to entering industry, was a postdoctoral fellow in biostatistics at the University of Melbourne.
• Holds a PhD in Psychology from the Australian National University.
Today’s episode is primarily intended for a technical audience as it's packed with practical tips and software for data scientists.
In this episode, Jodie details:
• What a data science developer advocate is and why you might want to consider it as a career option.
• How to work effectively, efficiently, and confidently with real-world data.
• Her favorite Python libraries, such as ones for data viz and NLP.
• How to have reproducible data science workflows.
• The subject she would have majored in if she could go back in time.
The SuperDataScience podcast is available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
The Critical Human Element of Successful A.I. Deployments
For today's episode, I sat down with the prolific data-science instructor, author and practitioner Keith McCormick to discuss how critical user considerations are for developing a successful A.I. application.
The SuperDataScience podcast is available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
AutoML: Automated Machine Learning
AutoML with Erin LeDell — it rhymes! In today's episode, H2O.ai's Chief ML Scientist guides us through what Automated Machine Learning is and why it's an advantageous technique for data scientists to adopt.
Dr. LeDell:
• Has been working at H2O.ai — the cloud A.I. firm that has raised over $250m in venture capital and is renowned for its open-source AutoML library — for eight years.
• Founded (WiMLDS) Women in Machine Learning & Data Science (100+ chapters worldwide).
• Co-founded R-Ladies Global, a community for genders currently underrepresented amongst R users.
• Is celebrated for her talks at leading A.I. conferences.
• Previously was Principal Data Scientist at two acquired A.I. startups.
• Holds a Ph.D. from the Berkeley focused on ML and computational stats.
Today’s episode is relatively technical so will primarily appeal to technical listeners, but it would also provide context to anyone who’s interested to understand how key aspects of data science work are becoming increasingly automated.
In this episode, Erin details:
• What AutoML — automated machine learning — is and why it’s an advantageous technique for data scientists to adopt.
• How the open-source H2O AutoML platform works.
• What the “No Free Lunch Theorem” is.
• What Admissible Machine Learning is and how it can reduce the biases present in many data science models.
• The new software tools she’s most excited about.
• How data scientists can prepare for the increasingly automated data science field of the future.
The SuperDataScience podcast is available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
Subword Tokenization with Byte-Pair Encoding
When working with written natural language data as we do with many natural language processing models, a step we typically carry out while preprocessing the data is tokenization. In a nutshell, tokenization is the conversion of a long string of characters into smaller units that we call tokens.
Read MoreAnalyzing Blockchain Data and Cryptocurrencies
As real-time, publicly-available ledgers of transactions, blockchains provide exciting new data analytics opportunities. Kimberly Grauer leads us through the tools and approaches for blockchain analytics.
Kim:
• Is Director of Research at Chainalysis Inc., the world’s leading crypto analytics firm.
• Previously worked in an economic research and analysis group for NYC.
• Holds a Masters in Political Theory from the University of Oxford, a Master of Public Administration from the London School of Economics, and she completed the General Assembly Data Science bootcamp.
Today’s episode will appeal primarily to folks who are interested in blockchains and cryptocurrencies, particularly those keen to perform data analysis on blockchain data.
In this episode, Kim details:
• The unique real-time economic-data analytics opportunities that blockchains provide.
• Examples of her own research on blockchain data, such as analyses of illegal activity and global crypto adoption.
• The tools and approaches she uses daily to analyze and report on blockchain data.
• Where the evolutions of crypto, blockchains, and data science are going together.
• Why a data science bootcamp could be exactly the right thing for you if you’re looking to break into the field.
The SuperDataScience show's available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
Data Analyst, Data Scientist, and Data Engineer Career Paths
Keen to become a Data Analyst? Get promoted to Sr Data Analyst? Or explore Data Engineer/Scientist options? Shashank, a YouTube expert on these questions (>100k subscribers!) tackles them in today's episode.
Shashank:
• Has an exceptional YouTube channel focused on helping people break into a data analyst career.
• Works as a Senior Data Engineer at digital sports platform Fanatics, Inc.
• Was previously Data Analyst at luxury retailer Nordstrom and other firms.
• Holds a degree in chemistry from Emory University in Atlanta.
Today’s episode will appeal primarily to folks who are interested in becoming a data analyst, or who are interested in transitioning from a data analyst role into a data science or data engineering role.
In this episode, Shashank details:
• How you can land an entry-level data analyst role in just a few weeks, regardless of your educational and professional background.
• The hard and soft skills you need to progress from a junior data analyst to a senior data analyst position.
• What it takes to transition from data analyst to a typically more lucrative role as a data scientist or data engineer.
• His favorite resources for learning the essential skills for data scientists.
What he looks for when he’s interviewing candidates.
The SuperDataScience show's available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
Blockchains and Cryptocurrencies: Analytics and Data Applications
Today's episode introduces what Blockchains are, what Crypto is, and Data Science applications of these technologies. Philip Gradwell of globally-renowned Chainalysis Inc. is our brilliant guide.
Philip:
• Is Chief Economist at Chainalysis, the world’s leading crypto analytics firm — their analysis is regularly featured by major news outlets.
• Previously worked as Principal at Vivid Economics, where he helped grow the consulting firm to 40 people, eventually culminating in its acquisition by consulting giant McKinsey & Company.
• Holds a Master’s in Economics from UCL and a PPE degree — that’s Philosophy, Politics, and Economics — from the University of Oxford.
Today’s episode will appeal to anyone looking for an introduction to the blockchain and cryptocurrencies. It’ll hold special appeal for people keen to do data science with these technologies.
In this episode, Philip details:
• Similarities and differences between analyzing cryptocurrencies and the established fiat currencies.
• His crypto data analytics pipeline.
• How he develops data products for a wide range of users, including businesses, banks, governments, and law enforcement.
• How the blockchain facilitates innovative computing and machine learning technologies.
• What he looks for in the data scientists he hires.
The SuperDataScience show's available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
OpenAI Whisper: General-Purpose Speech Recognition
One of the challenges holding machines back from approaching human-level speech recognition like Whisper has has been acquiring sufficiently large amounts of high-quality, labeled training data. “Labeled” in this case means audio of speech that has a corresponding text associated with it. With enough of these labeled data, a machine learning model can learn to take in speech audio as an input and then output the correct corresponding text.
Read MoreCausality in Sequential Data
Inferring Causality is uniquely powerful when done with Sequential Data: data unfolding over time. Forecasting guru Dr. Sean Taylor — renowned for Prophet and now Motif Analytics co-founder — leads us through the topic.
Sean:
• Is Co-Founder and Chief Scientist of Motif Analytics, a startup that blends his deep expertise in causal modeling with sequential analytics.
• Previously worked as a Data Science Manager at Lyft.
• Also worked as a Research Scientist Manager at Facebook, where he led the development of the renowned open-source forecasting tool, Prophet.
• Holds a PhD in Information Systems from New York University and a BS in Economics from the University of Pennsylvania.
Today’s episode gets deep into the weeds on occasion, particularly when discussing making causal inferences, but most of the episode will resonate with any curious listener.
In this episode, Sean:
• Publicly unveils his new venture, filling us in on why now was the right time for him to co-found and lead data science at an ML startup.
• Details what causal modeling is, why every data scientist should be familiar with it, and how it can make a real-world impact, with many illustrative examples from his time at Lyft.
• Fills us in on the infrastructure and teams required for large-scale causal experimentation.
• Covers how causal modeling and forecasting can’t be fully automated today as it requires humans to make assumptions, but also how humans can make these assumptions in a more informed manner thanks to data visualizations.
• Explains what the field of Information Systems is and, having conducted several hundred interviews, what he looks for in the data scientists he hires.
The SuperDataScience show's available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
TEDx Talk: How Neuroscience Inspires A.I. Breakthroughs that will Change the World
My first TED-format talk is live! In it, I use (A.I.-generated!) visuals to color how A.I. will transform the world in our lifetimes, with particular emphases on climate change, food security, and healthcare innovations.
Thanks to Christina, Banu, and everyone at TEDxDrexelU for inviting me to speak, organizing a slick event, and masterfully editing the footage of my talk.
Thanks to Ed, Andrew, and Shaan at Nebula.io for providing invaluable feedback on drafts of my talk. It's only due to your constructive criticism that the final version turned out as well as it did. Thanks as well to Steven and Alex at Wynden Stark for kindly covering the travel costs of any employees that came down to Philadelphia to see the talk in-person.
Finally, thanks to Taya and Hannah at OpenAI for providing me with early access to custom images from their DALL-E 2 model. These were critical to me being able to tell the effectively convey the narrative I yearned to.
Causal Machine Learning
Causal ML is today's focus with Dr. Emre Kiciman — Senior Principal Researcher at Microsoft, developer of the DoWhy causal modeling library for Python, and a leader in applying causal research to social sciences.
Emre:
• Has worked within prestigious Microsoft Research for over 17 years.
• Leads Microsoft’s research on Causal Machine Learning.
• Leads development of the DoWhy open-source causal modeling library for Python (part of the PyWhy GitHub project).
• Pioneered the use of social media data to answer causal questions in the social sciences, such as with respect to physical and mental health.
• Has published 100+ papers and been cited 8000+ times.
• Holds a PhD in Computer Science from Stanford University.
Today’s episode is relatively technical, so will probably appeal primarily to folks with technical backgrounds like data scientists, ML engineers, and software developers.
In this episode, Emre details:
• What Causal ML is and how it’s different from "correlational" ML.
• The four key steps of causal inference and how they impact ML.
• The types of data that are most amenable to causal methods and those that aren’t yet… but may be soon.
• Exciting real-world applications of Causal ML.
• The software tools he most highly recommends.
• What he looks for in the data science researchers he hires.
The SuperDataScience show's available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
Geospatial Data and Unconventional Routes into Data Careers
This week, the remarkably well-read Christina Stathopoulos, details open-source software for working with geospatial data... as well as how you can navigate your data-career path, no matter what your background.
Christina:
• Has worked at Google for nearly five years in several data-centric roles.
• For the past year, she’s worked as an Analytical Lead for Waze, the popular crowdsourced navigation app owned by Google.
• Is also an adjunct professor at IE Business School School in Madrid, where she teaches courses on business analytics, machine learning, data visualization, and data ethics.
• Previously worked as a data engineer at media analytics giant Nielsen.
• Holds a Master’s in Business Analytics and Big Data from IE Business School and a Bachelor’s in Science, Tech, and Society from North Carolina State University.
Today’s episode will appeal to a broad audience of technical and non-technical listeners alike.
In this episode, Christina details:
• Geospatial data and open-source packages for working with it.
• Her tips for getting a foothold in a data career if you come from an unconventional background.
• Guidance to help women and other underrepresented groups thrive in tech.
• The hard and soft skills most essential to success in a data role today.
• Her #bookaweekchallenge and her top data book recommendations.
The SuperDataScience show's available on all major podcasting platforms, YouTube, and at SuperDataScience.com.