Today, Mariya Sha — host of the wildly popular "Python Simplified" YouTube channel (140k subscribers!) — taps her breadth of A.I. expertise to provide a fun and fascinating finale to SuperDataScience guest episodes for 2022.
Mariya:
• Is the mind behind the "Python Simplified" YouTube channel that makes advanced concepts (e.g., ML, neural nets) simple to understand.
• Her videos cover Python-related topics as diverse as data science, web scraping, automation, deep learning, GUI development, and OOP.
• Is renowned for taking complex concepts such as gradient descent or unsupervised learning and explaining them in a straightforward manner that leverages hands-on, real-life examples.
• Is pursuing a bachelor's in Computer Science (with a specialization in A.I. and Machine Learning) from the University of London.
Today’s episode should appeal to anyone who’s interested in or involved with data science, machine learning, or A.I.
In this episode, Mariya details:
• How the incredible potential of ML in our lifetimes inspired her to shift her focus from web-development languages like JavaScript to Python.
• Why automation and web scraping are critical skills for data scientists.
• How to make learning any apparently complex data science concept straightforward to comprehend.
• Her favorite Python libraries and software tools.
• One rarely-mentioned topic that every data scientist would benefit from.
• The pros and cons of pursuing a 100% remote degree in computer science.
The SuperDataScience podcast is available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
Filtering by Tag: Artificial Inteligence
The Equality Machine
Many recent books and articles spread fear about data collection and A.I. Today's guest, Prof. Orly Lobel, offers the antidote with her book "The Equality Machine" — an optimistic take on the future of data science.
Causal Machine Learning
Causal ML is today's focus with Dr. Emre Kiciman — Senior Principal Researcher at Microsoft, developer of the DoWhy causal modeling library for Python, and a leader in applying causal research to social sciences.
Emre:
• Has worked within prestigious Microsoft Research for over 17 years.
• Leads Microsoft’s research on Causal Machine Learning.
• Leads development of the DoWhy open-source causal modeling library for Python (part of the PyWhy GitHub project).
• Pioneered the use of social media data to answer causal questions in the social sciences, such as with respect to physical and mental health.
• Has published 100+ papers and been cited 8000+ times.
• Holds a PhD in Computer Science from Stanford University.
Today’s episode is relatively technical, so will probably appeal primarily to folks with technical backgrounds like data scientists, ML engineers, and software developers.
In this episode, Emre details:
• What Causal ML is and how it’s different from "correlational" ML.
• The four key steps of causal inference and how they impact ML.
• The types of data that are most amenable to causal methods and those that aren’t yet… but may be soon.
• Exciting real-world applications of Causal ML.
• The software tools he most highly recommends.
• What he looks for in the data science researchers he hires.
The SuperDataScience show's available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
A4N Episode 5: We're on Pause for Now!
In this episode of A4N, I have a special announcement! While the A4N podcast will be going on indefinite hiatus, it is because I am now hosting the SuperDataScience Podcast. If you enjoyed A4N then you're sure to enjoy the SuperDataScience podcast, which publishes twice every week on Tuesdays and Fridays!
You can check it out here.