

An Interactive Introduction to Artificial Neural Networks

Jon Krohn, D.Phil.

#ODSC Open Data Science Conf. NY June 28th, 2019

github.com/jonkrohn/tf2

POLL

What are you?

- Developer / Engineer
- Scientist / Analyst / Statistician / Mathematician
- Combination of the Above
- Other

POLL

What's your level of experience with the topic?

- little to no exposure to deep learning
- some deep learning theory
- deep learning theory + experience with a deep learning library
- deep learning theory + experience with TensorFlow/Keras

DEEP LEARNING ILLUSTRATED

A Visual, Interactive Guide to Artificial Intelligence

JON KROHN

with GRANT BEYLEVELD and AGLAÉ BASSENS

- 1. The Unreasonable Effectiveness of Deep Learning
- 2. Essential Deep Learning Theory
- 3. Deep Learning with TensorFlow 2.0

Part 1:

The Unreasonable Effectiveness of Deep Learning

- Intro to Neural Networks and Deep Learning
- Deep Learning Families
- Deep Learning Libraries

Part 1:

The Unreasonable Effectiveness of Deep Learning

- Intro to Neural Networks and Deep Learning (Chapter 1)
- Deep Learning Families
- Deep Learning Libraries

Neocognitron (Fukushima, 1980)

Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron

Fig. 2. Schematic diagram illustrating the interconnections between layers in the neocognitron

LeNet-5 (LeCun et al., 1998)

Traditional ML vs Deep Learning

Viola & Jones (2001)

AlexNet (Krizhevsky et al., 2012)

POLL

If a voice recognition algorithm is fed audio of speech as inputs, given corresponding text as the outputs (labels) to learn, and no features are explicitly programmed, is this a:

- Traditional Machine Learning Algorithm
- Deep Learning Algorithm
- I Don't Know

Part 1:

The Unreasonable Effectiveness of Deep Learning

- Intro to Neural Networks and Deep Learning
- Deep Learning Families (Chapters 2-4)
- Deep Learning Libraries

Dense Networks

The Cart Before the Horse (Chapter 5)

interactive Colab demo: Shallow Net in TF 2.0 (bit.ly/shallowTF)

GitHub repo: github.com/jonkrohn/tf2

ConvNets: Convolutional Networks

ConvNets: Convolutional Networks

RNNs: Recurrent Neural Networks

Deep Reinforcement Learning

GANs: Generative Adversarial Networks

GANs: Generative Adversarial Networks

If you were designing an algorithm to learn to play Tetris by maximizing its score, which of these Deep Learning approaches would be most appropriate?

- Convolutional Neural Network
- Recurrent Neural Network
- Deep Reinforcement Learning
- Generative Adversarial Network

If you were designing an algorithm to recognise tumours in medical images, which of these Deep Learning approaches would be most appropriate?

- Convolutional Neural Network
- Recurrent Neural Network
- Deep Reinforcement Learning
- Generative Adversarial Network

If you were designing an algorithm to predict stock price movements based on time series data, which of these Deep Learning approaches would be most appropriate?

- Convolutional Neural Network
- Recurrent Neural Network
- Deep Reinforcement Learning
- Generative Adversarial Network

Deep Learning Fundamentals

Part 1:

The Unreasonable Effectiveness of Deep Learning

- Intro to Neural Networks and Deep Learning
- Deep Learning Families
- Deep Learning Libraries (Chapter 14)

Leading Deep Learning Libraries

	Caffe	Torch	MXNet	TensorFlow
Language	Python, Matlab	Lua, C	Python, R, C++ Julia, Matlab JavaScript, Go Scala, Perl	Python, C , C++ Java, Go, JS, Swift (<i>Haskell, Julia, R,</i> <i>Scala, Rust, C#</i>)
Programming Style	Symbolic	Imperative	Imperative	Symbolic for now
Parallel GPUs: Data	Yes	Yes	Yes	Yes
Parallel GPUs: Model		Yes	Yes	Yes
Pre-Trained Models	Model Zoo	Model Zoo	Model Zoo	github.com/tensorflow/ models
High-Level APIs		PyTorch	in-built	Keras
Particular Strength	CNNs	interactivity		production deployment

Deep Learning Fundamentals

Part 2:

Essential Deep Learning Theory

- Learning with Artificial Neurons (Chapters 6-7)
- TensorFlow Playground

"Whiteboarding"!

Neurons

- sigmoid
- tanh
- ReLU

Neurons

- sigmoid
- tanh
- ReLU

Cost Functions

quadratic cost

Neurons

- sigmoid
- tanh
- ReLU

Cost Functions

- quadratic cost
- cross-entropy

Neurons

- sigmoid
- tanh
- ReLU

Cost Functions

- quadratic cost
- cross-entropy

Gradient Descent

Neurons

- sigmoid
- tanh
- ReLU

Cost Functions

- quadratic cost
- cross-entropy

Gradient Descent

Backpropagation

Neurons

- sigmoid
- tanh
- ReLU

Cost Functions

- quadratic cost
- cross-entropy

Gradient Descent

Backpropagation

Layers

- dense
- softmax

Neurons

- sigmoid
- tanh
- ReLU

Cost Functions

- quadratic cost
- cross-entropy

Gradient Descent

Backpropagation

Layers

- dense
- softmax

Initialization

Glorot

Neurons

- sigmoid
- tanh
- ReLU

Cost Functions

- quadratic cost
- cross-entropy

Stochastic Gradient Descent

- mini-batch size
- learning rate
- second-order, e.g., Adam

Backpropagation

Initialization

Glorot

Layers

- dense
- softmax

Neurons

- sigmoid
- tanh
- ReLU

Cost Functions

- quadratic cost
- cross-entropy

Stochastic Gradient Descent

- mini-batch size
- learning rate
- second-order, e.g., Adam

Backpropagation

Initialization

Glorot

Layers

- dense
- softmax

Avoiding Overfitting

Dropout

Dropout

Neurons

- sigmoid
- tanh
- ReLU

Cost Functions

- quadratic cost
- cross-entropy

Stochastic Gradient Descent

- mini-batch size
- learning rate
- second-order, e.g., Adam

Backpropagation

Initialization

Glorot

Layers

- dense
- softmax

Avoiding Overfitting

- Dropout
- Data Augmentation

TensorFlow Playground

interactive demo: playground.tensorflow.org

Deep Learning Fundamentals

Part 3:

Deep Learning with TensorFlow

- Revisiting our Shallow Neural Network
- Deep Nets in TensorFlow (Chapters 8-9)
- What to Study Next, Depending on Your Interests

Revisiting our Shallow Net

interactive Colab demo: Shallow Net in TensorFlow

Deep Nets in TensorFlow

interactive Colab demo: Deep Net in TF 2.0 (bit.ly/deepNetTF)

What follow-up Deep Learning topics interest you most?

- CNNs and Machine Vision
- Sequences: RNNs, LSTMs, NLP, Financial Time Series
- Generative Adversarial Networks
- Deep Reinforcement Learning
- Something Else

DEEP LEARNING ILLUSTRATED

A Visual, Interactive Guide to Artificial Intelligence

JON KROHN

Stay in Touch

twitter.com/JonKrohnLearns

medium.com/@jonkrohn

linkedin.com/in/jonkrohn
(with message mentioning ODSC)

