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POLL

What are you?

* Developer / Engineer

» Scientist / Analyst / Statistician / Mathematician
 Combination of the Above

e Other
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POLL

What’s your level of experience with the topic?

* little to no exposure to deep learning

 some deep learning theory

» deep learning theory + experience with a deep
learning library

* deep learning theory + experience with
TensorFlow/Keras
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Deep Learning Fundamentals

1. The Unreasonable Effectiveness of Deep Learning

2. Essential Deep Learning Theory
3. Deep Learning with TensorFlow 2.0
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Deep Learning Fundamentals

Part 1:
The Unreasonable Effectiveness of Deep Learning

* Intro to Neural Networks and Deep Learning
* Deep Learning Families
 Deep Learning Libraries
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Deep Learning Fundamentals

Part 1:
The Unreasonable Effectiveness of Deep Learning

* Intro to Neural Networks and Deep Learning
(Chapter 1)

* Deep Learning Families

* Deep Learning Libraries
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Neocognitron (Fukushima, 1980)

‘P Pearson
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Fig. 2. Schematic diagram illustrating the

/ interconnections between layers in the
neocognitron
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LeNet-5 (LeCun et al., 1998)
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Traditional ML vs Deep Learning

TML

Deep
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Viola & Jones (2001)
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AlexNet (Krizhevsky et al., 2012)
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POLL

If a voice recognition algorithm is fed audio of speech as inputs,
given corresponding text as the outputs (labels) to learn, and
no features are explicitly programmed, is this a:

* Traditional Machine Learning Algorithm
* Deep Learning Algorithm
* | Don't Know
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Deep Learning Fundamentals

Part 1:
The Unreasonable Effectiveness of Deep Learning

* Intro to Neural Networks and Deep Learning
* Deep Learning Families (Chapters 2-4)
* Deep Learning Libraries
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The Cart Before the Horse (Chapter 5)
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interactive Colab demo: Shallow Net in TF 2.0 (bit.ly/shallowTF)
GitHub repo: github.com/jonkrohn/tf2
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ConvNets: Convolutional Networks
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ConvNets: Convolutional Networks

person : 0.992
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RNNs: Recurrent Neural Networks
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Deep Reinforcement Learning
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GANSs: Generative Adversarial Networks
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GANSs: Generative Adversarial Networks
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POLL

If you were designing an algorithm to learn to play Tetris by
maximizing its score, which of these Deep Learning
approaches would be most appropriate?

Convolutional Neural Network
Recurrent Neural Network
Deep Reinforcement Learning
Generative Adversarial Network
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POLL

If you were designing an algorithm to recognise tumours in
medical images, which of these Deep Learning approaches
would be most appropriate?

Convolutional Neural Network
Recurrent Neural Network
Deep Reinforcement Learning
Generative Adversarial Network
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POLL

If you were designing an algorithm to predict stock price
movements based on time series data, which of these Deep
Learning approaches would be most appropriate?

Convolutional Neural Network
Recurrent Neural Network
Deep Reinforcement Learning
Generative Adversarial Network
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Deep Learning Fundamentals

Part 1:
The Unreasonable Effectiveness of Deep Learning

* Intro to Neural Networks and Deep Learning
* Deep Learning Families
* Deep Learning Libraries (Chapter 14)
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Leading Deep Learning Libraries

Caffe Torch MXNet TensorFlow

Language Python, Matlab Lua, C Python, R, C++ Python, C, C++
Julia, Matlab Java, Go, JS, Swift
JavaScript, Go  (Haskell, Julia, R,

Scala, Perl Scala, Rust, C#)
Programming Style Symbolic Imperative Imperative Symbolic... for now
Parallel GPUs: Data Yes Yes Yes Yes
Parallel GPUs: Model Yes Yes Yes
Pre-Trained Models Model Zoo Model Zoo Model Zoo github.com/tensorflow/

models

High-Level APIs PyTorch in-built Keras
Particular Strength CNNs interactivity production deployment
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Deep Learning Fundamentals

Part 2:
Essential Deep Learning Theory

* Learning with Artificial Neurons (Chapters 6-7)
* TensorFlow Playground
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“Whiteboarding”!



Neurons

e sigmoid
 tanh
* RelU
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Neurons
e sigmoid
* tanh
* RelLU

Cost Functions
e quadratic cost
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Neurons

e sigmoid
 tanh
* RelU

Cost Functions

e quadratic cost
e cross-entropy
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Neurons

e sigmoid
 tanh
* RelU

Cost Functions

e quadratic cost
e cross-entropy

Gradient Descent
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Neurons

e sigmoid
 tanh
* RelU

Cost Functions

e quadratic cost
e cross-entropy

Gradient Descent
Backpropagation
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Neurons

e sigmoid
 tanh
* RelU

Cost Functions

e quadratic cost
e cross-entropy

Gradient Descent
Backpropagation
Layers

e dense
e softmax
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Neurons Initialization

e sigmoid * Glorot
 tanh
* RelU

Cost Functions

e quadratic cost
e cross-entropy

Gradient Descent
Backpropagation
Layers

e dense
e softmax
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Neurons

e sigmoid
e tanh
* RelU

Cost Functions

e quadratic cost
e cross-entropy

Stochastic Gradient Descent
*  mini-batch size
* learning rate
* second-order, e.g., Adam

Backpropagation

‘P Pearson

Learning Speed

101

1031

Initialization
e Glorot
Layers

e dense
* softmax

—— hidden_4
—— hidden_3
—— hidden_2
— hidden_1

—— hidden_0

NP

N ———

25 50 75 100 125 150 175 200
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Neurons Initialization

e sigmoid * Glorot
* tanh Layers
* RelU * dense
Cost Functions e softmax
* quadratic cost Avoiding Overfitting
e cross-entropy «  Dropout

Stochastic Gradient Descent
*  mini-batch size
* learning rate
* second-order, e.g., Adam

Backpropagation
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Neurons Initialization

. s|gmo|d e Glorot

 tanh Layers

* RelU « dense
Cost Functions * softmax

* quadratic cost Avoiding Overfitting

* cross-entropy * Dropout
Stochastic Gradient Descent  Data Augmentation

* mini-batch size
* learning rate
* second-order, e.g., Adam

Backpropagation

’P Pearson ©2018 Pearson, Inc.



TensorFlow Playground

interactive demo: playground.tensorflow.org
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Deep Learning Fundamentals

Part 3:
Deep Learning with TensorFlow

* Reuvisiting our Shallow Neural Network
 Deep Nets in TensorFlow (Chapters 8-9)
* What to Study Next, Depending on Your Interests
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Deep Nets in TensorFlow

interactive Colab demo: Deep Net in TF 2.0 (bit.ly/deepNetTF)
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POLL

What follow-up Deep Learning topics interest you most?

* CNNs and Machine Vision

e Sequences: RNNs, LSTMs, NLP, Financial Time Series
* Generative Adversarial Networks

* Deep Reinforcement Learning

 Something Else
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Stay in Touch

twitter.com/JonKrohnlLearns
medium.com/@jonkrohn

linkedin.com/in/jonkrohn
(with message mentioning ODSC)
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