### Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

### Γheory

Neural Units
Neural Nets
Deep Neural Ne

### Applicatio

ConvNets LSTMs untapt Reinforcement Building Blocks

The Future

# Deep Learning with Artificial Neural Networks

Jon Krohn
Slides available at jonkrohn.com/talks

Chief Data Scientist at untapt

July 9th, 2018



Antecedents
Tech Velocity
Vision Case Study
Machine Intelligence

Theory
Neural Units
Neural Nets
Deep Neural Ne

Application
ConvNets
LSTMs
untapt
Reinforcement
Building Blocks

The Future

Antecedents

The Velocity of Technological Progress Case Study: A History of Biological & Artificial Vision Machine Intelligence

2 Theory
Biological & Artificial Neurons
Neural Networks
Deep Neural Networks

3 Contemporary Applications
Convolutional Neural Networks
Long Short-Term Memory Recurrent Neural Networks
Deep Learning at untapt
Deep Reinforcement Learning
Building Blocks



Antecedents
Tech Velocity
Vision Case Study
Machine Intelligence

Theory Neural Units Neural Nets Deep Neural Ne

ConvNets
LSTMs
untapt
Reinforcement
Building Blocks

The Futur

1 Antecedents

The Velocity of Technological Progress Case Study: A History of Biological & Artificial Vision Machine Intelligence

2 Theory

Biological & Artificial Neurons Neural Networks Deep Neural Networks

3 Contemporary Applications
Convolutional Neural Networks
Long Short-Term Memory Recurrent Neural Networks
Deep Learning at untapt
Deep Reinforcement Learning
Building Blocks



Antecedents
Tech Velocity
Vision Case Study
Machine Intelligence

Theory Neural Units Neural Nets Deep Neural Ne

ConvNets
LSTMs
untapt
Reinforcement
Building Blocks

The Futur

Antecedents

The Velocity of Technological Progress Case Study: A History of Biological & Artificial Vision Machine Intelligence

2 Theory

Biological & Artificial Neurons Neural Networks Deep Neural Networks

3 Contemporary Applications

Convolutional Neural Networks
Long Short-Term Memory Recurrent Neural Networks
Deep Learning at untapt
Deep Reinforcement Learning
Building Blocks



**Antecedents** 

The Velocity of Technological Progress Case Study: A History of Biological & Artificial Vision Machine Intelligence

2 Theory

Biological & Artificial Neurons Neural Networks Deep Neural Networks

3 Contemporary Applications

Convolutional Neural Networks Long Short-Term Memory Recurrent Neural Networks Deep Learning at untapt Deep Reinforcement Learning **Building Blocks** 



Tech Velocity

**Antecedents** 

The Velocity of Technological Progress

Case Study: A History of Biological & Artificial Vision

Biological & Artificial Neurons Neural Networks

Convolutional Neural Networks Long Short-Term Memory Recurrent Neural Networks



## Jeanne Calment

### Antecedents

Tech Velocity
Vision Case Study

### Theory

Neural Units
Neural Nets
Deep Neural Ne

## Applicatio

LSTMs untapt Reinforcement

Dullding Dioce





### Antecedents

Tech Velocity
Vision Case Study

### Γheory

Neural Units Neural Nets Deep Neural N

### Applicatio ConvNets

untapt Reinforcemen

The Future

# Jeanne Calment

(1875-1997 — i.e., 122 years)







## Life in the Year 2138

### Antecedent

Tech Velocity
Vision Case Study

### Theory

Neural Units
Neural Nets
Deep Neural N

## Applica

ConvNets LSTMs untapt Reinforcement Building Blocks





### Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

### Theory

Neural Units Neural Nets Deep Neural Nets

### Applicati

ConvNets LSTMs untapt Reinforcement Building Blocks





### Antecedents

Tech Velocity
Vision Case Study

### heory

Neural Units
Neural Nets
Deep Neural N

## Application ConvNets

ConvNets LSTMs untapt

Building Bloc





Antecedents
Tech Velocity
Vision Case Study
Machine Intelligence

Theory
Neural Units
Neural Nets

Application
ConvNets
LSTMs
untapt
Reinforcement
Building Blocks

1 Antecedents

The Velocity of Technological Progress

Case Study: A History of Biological & Artificial Vision Machine Intelligence

2 Theory

Biological & Artificial Neurons Neural Networks Deep Neural Networks

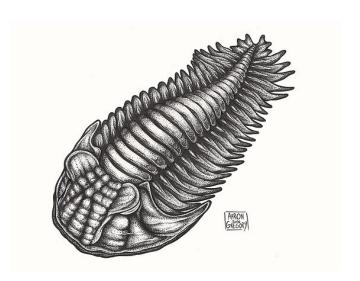
3 Contemporary Applications

Convolutional Neural Networks
Long Short-Term Memory Recurrent Neural Networks
Deep Learning at untapt
Deep Reinforcement Learning
Building Blocks



### Antecedents

Tech Velocity
Vision Case Study


### Theory

Neural Units
Neural Nets
Deep Neural I

## Applicati

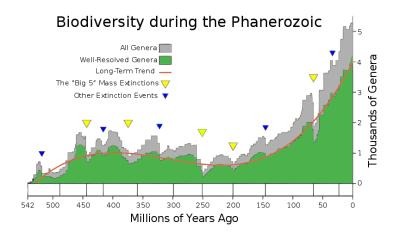
ConvNets LSTMs untapt Reinforcemen

Building Block





Antecedents
Tech Velocity
Vision Case Study


## Theory

Neural Units
Neural Nets
Deep Neural Ne

### Applicatio ConvNets

untapt Reinforcemer

Building Block



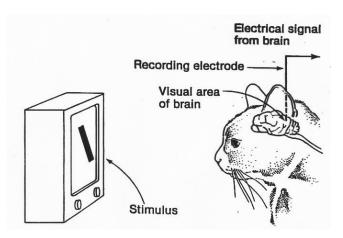


### Antecedents

Tech Velocity
Vision Case Study

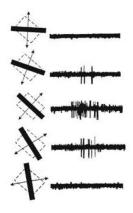
### Theory

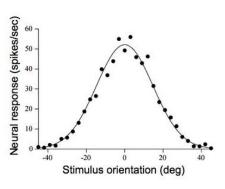
Neural Units
Neural Nets
Deep Neural N


## Applicatio

LSTMs

Reinforcemen


The Futur


## Hubel & Wiesel (1959)





Vision Case Study



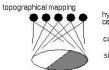


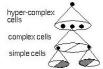
Hubel & Wiesel, 1968



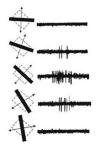
### Antecedents

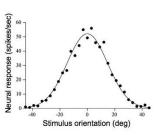
Tech Velocity
Vision Case Study
Machine Intelligence


### heory


Neural Units
Neural Nets
Deep Neural N

### **Application**

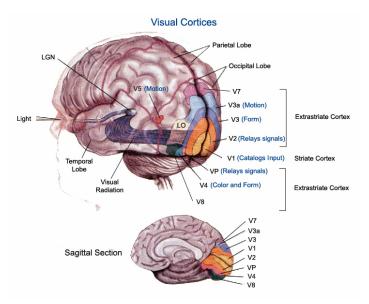

LSTMs untapt


Reinforcement
















Vision Case Study

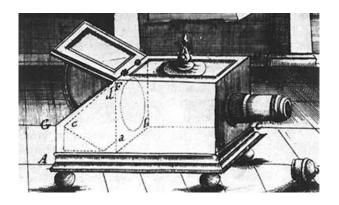




### Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

### Theory


Neural Units
Neural Nets

## Application

ConvNets
LSTMs
untapt
Reinforcement
Building Blocks

The Futur

## Camera Obscura da Vinci (15th Century)





### Antecedent

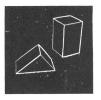
Tech Velocity
Vision Case Study

### Thoory

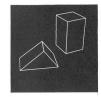
Neural Units
Neural Nets
Deep Neural N

### Applicat

ConvNets LSTMs untapt Reinforcement Building Blocks


The Future

# Block World Larry Roberts (1965)


-23-4445(a-d)



(a) Original picture.



(b) Differentiated picture.



(c) Line drawing.



(d) Rotated view.



### Antecedent

Anteceden

Vision Case Study

### heorv

Neural Units Neural Nets

eep Neural I

### Applicat

ConvNets

LSTMS

Reinforcemen

The Future

# Viola & Jones (2001)















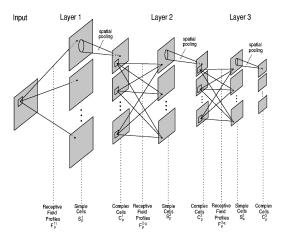
Antecedents

Tech Velocity
Vision Case Study

### Theor

Neural Units Neural Nets Deep Neural I

Applicatio


ConvNets LSTMs

Reinforcemen

The Future

# Neurocognitron

Fukushima (1980)





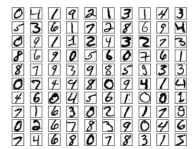
### Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

### heory

Neural Units Neural Nets Deep Neural N

## Application


untapt Reinforcemen

Reinforcemer Building Block

The Future

## MNIST & LeNet-5

LeCun et al. (1998)



PROC. OF THE IEEE, NOVEMBER 1998

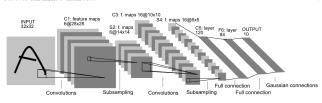



Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.



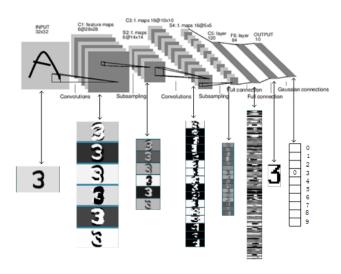
## Antecedents

Tech Velocity
Vision Case Study

## Theory

Neural Units
Neural Nets

## Applicatio


LSTMs

Reinforceme

Building Bloc

The Future

# LeCun, Boutou, Bengio & Haffner (1998)









## **ImageNet**

Antecedents
Tech Velocity
Vision Case Study

### Thoory

Neural Units
Neural Nets
Deep Neural N

## Applicatio

untapt Reinforcemer

The Future



gill fungus ffordshire bullterrier

currant

dead-man's-fingers

beach wagon

fire engine



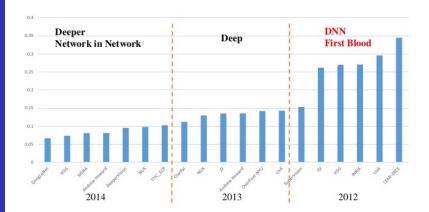
indri

howler monkey

Antecedents

Vision Case Study
Machine Intelligence

Neural Units
Neural Nets
Deep Neural N


Application
ConvNets
LSTMs

Reinforcemen
Building Block

The Future

# ImageNet Classification Error

Krizhevsky, Sutskever & Hinton (2012)





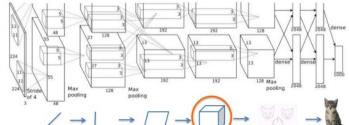
Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

### heory

Neural Units Neural Nets Deep Neural N

Applicatio ConvNets


LSTMs

Reinforcement

The Future

# Krizhevsky et al. (2012)







Machine Intelligence

**Antecedents** 

The Velocity of Technological Progress Case Study: A History of Biological & Artificial Vision Machine Intelligence

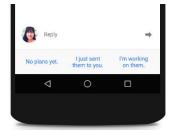
Biological & Artificial Neurons Neural Networks Deep Neural Networks

Convolutional Neural Networks Long Short-Term Memory Recurrent Neural Networks



### Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence


### Theory

Neural Units
Neural Nets
Deep Neural N

### Applica

LSTMs
untapt
Reinforcemer
Building Blod







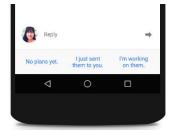






### Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence


### Theory

Neural Units
Neural Nets
Deep Neural N

### Applica

LSTMs
untapt
Reinforcemer
Building Blod







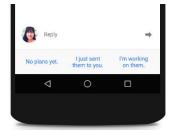






### Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence


### Theory

Neural Units
Neural Nets
Deep Neural N

### Applica

LSTMs
untapt
Reinforcemer
Building Blod













### Anteced

Tech Velocity
Vision Case Study
Machine Intelligence

### Theory

Neural Units Neural Nets Deep Neural

### Applicati

ConvNets LSTMs untapt Reinforcement Building Blocks





Neural Units

The Velocity of Technological Progress Case Study: A History of Biological & Artificial Vision

2 Theory

Biological & Artificial Neurons

Neural Networks Deep Neural Networks

Convolutional Neural Networks Long Short-Term Memory Recurrent Neural Networks



### Antecedents

Tech Velocity
Vision Case Study

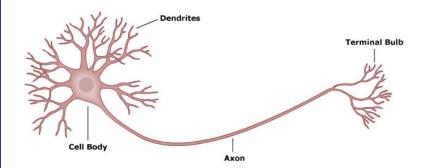
### Theor<sup>®</sup>

Neural Units

Neural Nets

Application

ConvNets


untant

Reinforceme

Building Block

The Future

# Biological Neuron Morphology





### Antecedents

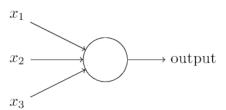
Tech Velocity
Vision Case Study
Machine Intelligence

### Theory

Neural Units

--- |

Application


ConvNets

untapt

Reinforceme

The Future

# Perceptron Rosenblatt (1957)



output = 
$$\begin{cases} 0 & \text{if } \sum_{j} w_{j} x_{j} \leq \text{ threshold} \\ 1 & \text{if } \sum_{j} w_{j} x_{j} > \text{ threshold} \end{cases}$$



#### Antecedents

Tech Velocity
Vision Case Study

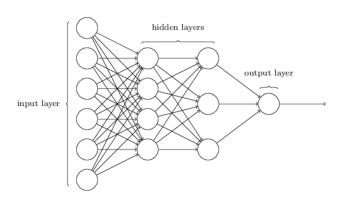
#### Theory

Neural Units

eural Nets

Applicati

Complete


LSTMs

Reinforceme

Building Bloc

The Future

## Multi-Layer Perceptron





#### Antecedents

Vision Case Study
Machine Intelligence

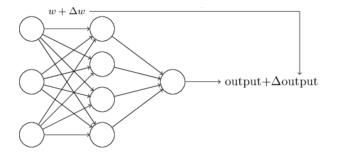
#### i neory

Neural Units

laan Maura

**Application** 

ConuNista


LSTMs

untapt

Dellaine Die

The Eutone

## Multi-Layer Perceptron





## Outline

Neural Nets

The Velocity of Technological Progress Case Study: A History of Biological & Artificial Vision

2 Theory

Biological & Artificial Neurons

Neural Networks

Deep Neural Networks

Convolutional Neural Networks Long Short-Term Memory Recurrent Neural Networks



Neural Nets

## **MNIST** Handwritten Digits

г ප a 

#### Antecedents

Tech Velocity Vision Case Study

#### Theory

Neural Nets

### Applicatio


ConvNets LSTMs

untapt

Building Bloo

The Futur

## Fully-Connected Neural Net Single Hidden Layer





#### Antecedents

Tech Velocity
Vision Case Study
Machine Intelliger

#### l heory

Neural Onits
Neural Nets
Deep Neural Ne

## Application ConvNets LSTMs

Reinforcement

Building Block

## Popular Libraries

Never pay for software

- TensorFlow [demo]
- Torch
- Caffe
- MXNet

- TFLearn
- Keras



#### Antecedents

Tech Velocity
Vision Case Study

#### Theory

Neural Nets
Deep Neural Ne

Application
ConvNets
LSTMs

untapt Reinforcemen

The Futur

## Popular Libraries

Never pay for software

- TensorFlow [demo]
- Torch
- Caffe
- MXNet

- TFLearn
- Keras



#### Antecedents

Tech Velocity
Vision Case Study

#### Theory

Neural Units
Neural Nets
Deep Neural Ne

## Application ConvNets LSTMs

untapt
Reinforcement
Building Blocks

The Future

## Popular Libraries

Never pay for software

- TensorFlow [demo]
- Torch
- Caffe
- MXNet

- TFLearn
- Keras



#### Antecedents

Tech Velocity
Vision Case Study

#### Theory

Neural Onits
Neural Nets
Deep Neural Ne

## Application ConvNets LSTMs

untapt
Reinforcement
Building Blocks

The Future

## Popular Libraries

Never pay for software

- TensorFlow [demo]
- Torch
- Caffe
- MXNet

- TFLearn
- Keras



#### Antecedents

Tech Velocity
Vision Case Study

#### Theory

Neural Units
Neural Nets
Deep Neural Ne

## Application ConvNets LSTMs

untapt
Reinforcement
Ruilding Blocks

The Futur

## Popular Libraries

Never pay for software

- TensorFlow [demo]
- Torch
- Caffe
- MXNet

- TFLearn
- Keras



#### Antecedents

Tech Velocity
Vision Case Study

#### Theor

Neural Units
Neural Nets
Deep Neural Ne

## Application ConvNets LSTMs

untapt
Reinforcement
Building Blocks

The Futur

## Popular Libraries

Never pay for software

- TensorFlow [demo]
- Torch
- Caffe
- MXNet

- TFLearn
- Keras



**Outline** 

Antecedents
Tech Velocity
Vision Case Study
Machine Intelligence

Theory
Neural Units
Neural Nets
Deep Neural Nets

Application
ConvNets
LSTMs
untapt
Reinforcement
Building Blocks

The Futur

Antecedents

The Velocity of Technological Progress
Case Study: A History of Biological & Artificial Vision
Machine Intelligence

2 Theory

Biological & Artificial Neurons Neural Networks

Deep Neural Networks

3 Contemporary Applications

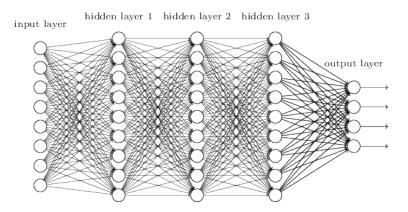
Convolutional Neural Networks
Long Short-Term Memory Recurrent Neural Networks
Deep Learning at untapt
Deep Reinforcement Learning
Building Blocks



Antecedents
Tech Velocity
Vision Case Study

I heory
Neural Units
Neural Nets

Deep Neural Nets


ConvNets
LSTMs
untapt
Reinforcement

untapt
Reinforcement
Building Block

The Future

## Deep Fully-Connected Net

3 (or more) Hidden Layers





#### Antecedent

Tech Velocity
Vision Case Study

#### heorv

Neural Units

Deep Neural Nets

#### Applica

ConvNets LSTMs

untapt

Building Bloo

The Future

## Synaptic Pruning





#### Antecedents

Tech Velocity
Vision Case Study

#### heory

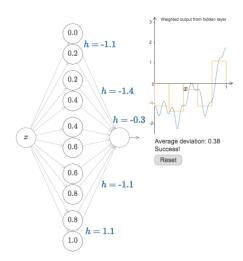
Neural Unit

Deep Neural Nets

#### **Application**

, ippiiodiic

LSTMs


untapt

Building Blog

The Future

## Universality

Solve Any Continuous Function (Nielsen, 2015)



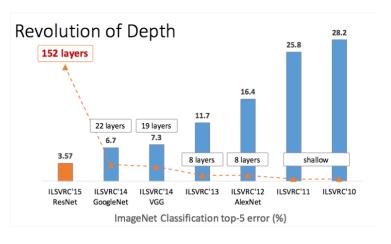


#### Antecedents

Tech Velocity
Vision Case Study

### Theory

Neural Nets
Deep Neural Nets


Deep Neural Ne

### Applicatio

LSTMs

Reinforcemen

Building Block



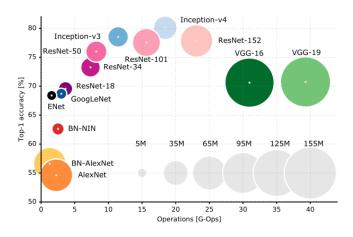


Antecedents

Tech Velocity
Vision Case Study

Theory

Neural Nets


Deep Neural Nets

Applicatio

ConvNets

untapt Reinforcemen

Reinforcemen Building Block





## Outline

ConvNets

The Velocity of Technological Progress Case Study: A History of Biological & Artificial Vision

Biological & Artificial Neurons Neural Networks

3 Contemporary Applications

Convolutional Neural Networks

Long Short-Term Memory Recurrent Neural Networks

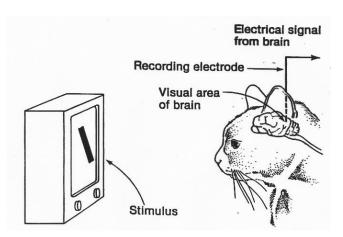


#### Antecedents

Tech Velocity Vision Case Study

#### Theory

Neural Units
Neural Nets


#### Applicati

ConvNets

Reinforceme

The Future

## Hubel & Wiesel (1959)

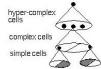




#### Antecedents

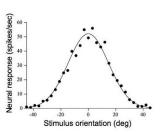
Tech Velocity
Vision Case Study
Machine Intelligence

#### heory


Neural Units
Neural Nets
Deep Neural N

#### Application

ConvNets


Reinforcement













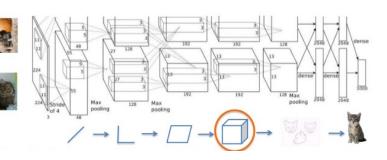


#### Antecedents

Tech Velocity
Vision Case Study

#### Theor

Neural Units Neural Nets Deep Neural Ne


### ConvNets

ConvNets

LSTMs

Reinforcement

Building Block





#### Antecede

Tech Velocity
Vision Case Study

#### Γheory

Neural Nets

Doop Neural Nets

#### Applicatio

ConvNets

.....

Reinforceme

building block

The Future

## DeConvNet Yosinski et al. (2015)

[Deep Visualization Toolbox]



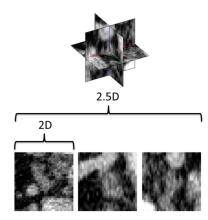
#### Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

#### Theory

Neural Units
Neural Nets
Deep Neural N

#### Applicat


ConvNets

LSTMs

Reinforcemer

The Cutum

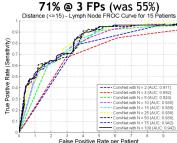
# "2.5-dimension" CT Scans Roth et al. (2015)





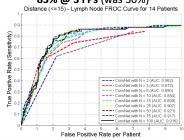
ConvNets

## Computer-Aided Detection


Shin et al. (2016); Roth et al. (2016)

**Experimental Results** (~100% sensitivity but ~40 FPs/patient at candidate generation step; then 3-fold CV with data augmentation)






Mediastinum



**Abdomen** 

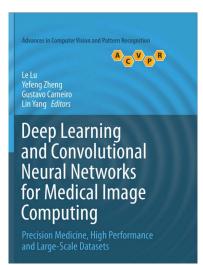
83% @ 3 FPs (was 30%)



#### Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

#### Theory


Neural Units
Neural Nets
Deep Neural Net

#### Applicat

ConvNets

LSTMs

Reinforceme





#### Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

#### Theory

Neural Units Neural Nets Deep Neural N

### ConvNets

LOTMO

\_\_\_\_

Reinforcemer

The Future

DAILY NEWS 22 November 2016

## Google's DeepMind agrees new deal to share NHS patient data



Phone alerts could save lives Jose Luis Pelsez Inc/Getty

By Victoria Turk

Google's DeepMind has announced a five-year agreement with a UK National Health Service (NHS) trust that will give it access to patient data to develop and deploy its healthcare app, Streams.

## **Outline**

Antecedents
Tech Velocity
Vision Case Study
Machine Intelligence

Theory Neural Units Neural Nets

Applicatio
ConvNets
LSTMs
untapt
Reinforcemen

\_\_\_\_\_\_

1 Antecedents

The Velocity of Technological Progress
Case Study: A History of Biological & Artificial Vision
Machine Intelligence

2 Theory

Biological & Artificial Neurons Neural Networks Deep Neural Networks

3 Contemporary Applications

Convolutional Neural Networks

Long Short-Term Memory Recurrent Neural Networks
Deep Learning at untapt
Deep Reinforcement Learning
Building Blocks



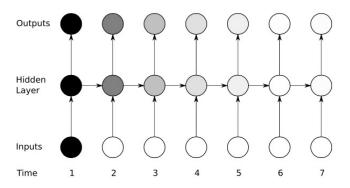
#### Antecedents

Tech Velocity
Vision Case Study

#### heory

Neural Units
Neural Nets

## Applicatio ConvNets LSTMs


untapt Beinforcem

Building Block

The Future

### Long Short-Term Memory

Hochreiter & Schmidhuber (1997)



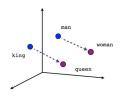


#### Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

#### Γheory

Neural Units Neural Nets Deep Neural Net


## Application ConvNets LSTMs

untapt
Reinforcement
Building Blocks

The Future

### Word2Vec

Mikolov, Sutskever, Chen, Corrado & Dean (2013)







Male-Female

Verb tense

Country-Capital

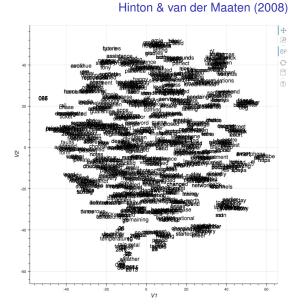


#### Antecedents

Tech Velocity Vision Case Study

#### Thoory

Neural Units
Neural Nets
Deep Neural N


## Application ConvNets LSTMs

untapt

Building Bloc

The Future

# t-SNE



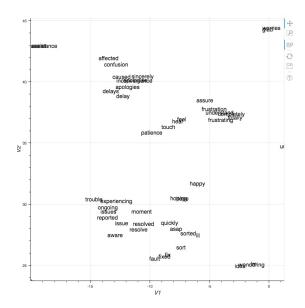


#### Antecedents

Tech Velocity
Vision Case Study

#### heory

Neural Units
Neural Nets
Deep Neural Ne


## Application ConvNets

untapt Reinforcemen

Building Block

The Future

### Word2Vec + t-SNE

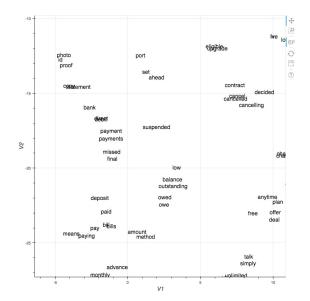




#### Antecedents

Tech Velocity
Vision Case Study

#### Theory


Neural Units Neural Nets Deep Neural Ne

## Application ConvNets

Reinforcemen

The Future

### Word2Vec + t-SNE





### Word2Vec + t-SNE

```
Tech Velocity
Vision Case Study
```

### Neural Units

Neural Nets Deep Neural Net

#### Application ConvNets

LSTMs

Reinforcemen

Building Block

```
The Future
```

```
model.most_similar(positive=['angular'])

[('angularjs', 0.9534549117088318),
    ('backbonejs', 0.9315043687820435),
    ('ember', 0.905410647392273),
    ('emberjs', 0.9029799103736877),
    ('reactjs', 0.896049439907074),
    ('requirejs', 0.8759748339653015),
    ('coffeescript', 0.8645504713058472),
    ('bootstrap', 0.854328083992004),
    ('nodejs', 0.8515532612800598),
    ('backbone', 0.8443130254745483)]
```

```
model.most_similar(positive=['managed'])

[('oversaw', 0.8659406900405884),
  ('directed', 0.8491166234016418),
  ('supervised', 0.8058902621269226),
  ('coordinated', 0.7858685851097107),
  ('led', 0.7539615035057068),
  ('orchestrated', 0.7211644649505615),
  ('supported', 0.7198437452316284),
  ('comanaged', 0.6774874925613403),
  ('encompassing', 0.6726169586181641),
  ('administered', 0.6706464886665344)]
```



## Outline

untapt

The Velocity of Technological Progress Case Study: A History of Biological & Artificial Vision

Biological & Artificial Neurons Neural Networks

3 Contemporary Applications

Convolutional Neural Networks Long Short-Term Memory Recurrent Neural Networks

Deep Learning at untapt



#### Antecedente

Tech Velocity Vision Case Study

#### Theory

Neural Units Neural Nets

#### Applicat

ConvNets LSTMs

untapt

Ruilding Block

The Futur

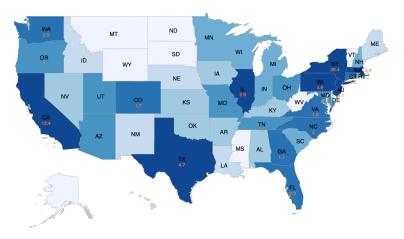
# untapt Digital Recruitment Platform



## untapt

#### Antecedents

Tech Velocity
Vision Case Study

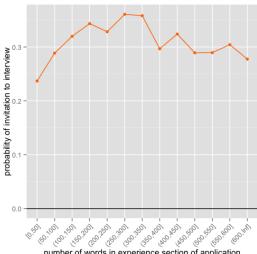

#### Theory

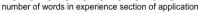
Neural Units
Neural Nets
Deep Neural Ne

## Application ConvNets

untapt Reinforcemen

Reinforcemen Building Block



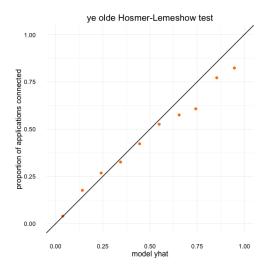




untapt

# untapt

### Candidate-Side Feedback








untapt









# Outline

Reinforcement

The Velocity of Technological Progress Case Study: A History of Biological & Artificial Vision

Biological & Artificial Neurons Neural Networks

3 Contemporary Applications

Convolutional Neural Networks Long Short-Term Memory Recurrent Neural Networks

Deep Reinforcement Learning



Antecedents

Tech Velocity
Vision Case Study
Machine Intelligent

Theory

Neural Units
Neural Nets
Deep Neural Ne

Application ConvNets

Reinforcement

Building Bloc

The Future

# AlphaGO Silver et al. (2016)



#### intecedents

Video Pinball 25395 Boxing Breakout Star Gunner Robotank Atlantis 449% Crazy Climber 419% Gopher Demon Attack 294% Name This Game Knull Assault 246% Road Runner Kangaroo James Bond 145% Tennis 143% Space Invaders 121% Beam Rider 119% Tutankham 112% Kung-Fu Master

Freeway 102%
Time Pilot 100%
Enduro 97%
Fishing Derby 93%
Up and Down 1ce Hockey 79%
Q\*Bert 78%
H.E.R.O 76%

Asterix

Batte Zone 27: Warner of Wor 27: Chopper Command . Chopper Command

Private Eye | -2% | Montezuma's Revenge | 9% | 0% | 300% | 400% | 500% | 600% | 1000%

Tech Velocity
Vision Case Study

Theory
Neural Units

Neural Units Neural Nets Deep Neural Ne

Applicatio ConvNets

untapt Reinforcement

Building Block

The Future

# Deep Q-Learning

at human-level or above

DQN

45008

below human-level

Mnih et al. (2015)

[Atari Games



#### intecedents

Video Pinball 25395 Boxing Breakout Star Gunner Robotank Atlantis 449% Crazy Climber 419% Gopher Demon Attack 294% Name This Game Knull Assault 246% Road Runner Kangaroo James Bond 145% Tennis 143% Space Invaders 121% Beam Rider 119% Tutankham 112% Kung-Fu Master

Freeway 102%
Time Pilot 100%
Enduro 97%
Fishing Derby 93%
Up and Down 1ce Hockey 79%
Q\*Bert 78%
H.E.R.O 76%

Asterix

Batte Zone 27: Warner of Wor 27: Chopper Command . Chopper Command

Private Eye | -2% | Montezuma's Revenge | 9% | 0% | 300% | 400% | 500% | 600% | 1000%

Tech Velocity
Vision Case Study

Theory
Neural Units

Neural Units Neural Nets Deep Neural Ne

Applicatio ConvNets

untapt Reinforcement

Building Block

The Future

# Deep Q-Learning

at human-level or above

DQN

45008

below human-level

Mnih et al. (2015)

[Atari Games



#### intecedents

Video Pinball 25395 Breakout Star Gunner Robotank Atlantis 449% Crazy Climber 419% Gopher Demon Attack Name This Game Assault Road Runner Kangaroo James Bond Tennis 143% Space Invaders 121% Beam Rider 119% Tutankham 112% Kung-Fu Master

Freeway
Time Pilot
Enduro
Fishing Derby

Asterix

Seaquest 25°
Double Dunk 17%—
Bowling 1-14%
Ms. Pacman 1-13%
Asteroids 1-7%
Frostbite 1-6%
Gravitar 1-5%

Private Eye | -2% | Montezuma's Revenge | 9% | 0% | 300% | 400% | 500% | 600% | 1000%

Battle Zone
Wizard of Wor
Chopper Command
Centipede
Bank Heist
C78.

Up and Down 92% Ice Hockey 79% Q\*Bert 78% H.E.R.O. 76%

Tech Velocity
Vision Case Study

Theory
Neural Unit

Neural Units
Neural Nets
Deep Neural Ne

Application
ConvNets

untapt Reinforcement

The Future

# Deep Q-Learning

at human-level or above

DQN

4500%

below human-level

Mnih et al. (2015)

[Atari Games]



#### Anteceder

Tech Velocity Vision Case Study Machine Intelligence

#### Theory

Neural Units Neural Nets Deep Neural Nets

## Application

ConvNets LSTMs

untapt

Reinforcement

Building Blod

The Future

[OpenAl Universe]

[Google DeepMind Lab]

[Unity ML Agents]



# **Outline**

Antecedents
Tech Velocity
Vision Case Study
Machine Intelligence

Theory Neural Units Neural Nets

Application ConvNets LSTMs untapt Reinforcement

Building Blocks

1 Antecedents

The Velocity of Technological Progress
Case Study: A History of Biological & Artificial Vision
Machine Intelligence

2 Theory

Biological & Artificial Neurons Neural Networks Deep Neural Networks

3 Contemporary Applications

Convolutional Neural Networks
Long Short-Term Memory Recurrent Neural Networks
Deep Learning at untapt
Deep Reinforcement Learning
Building Blocks



# Hardware

#### Antecedents

Tech Velocity Vision Case Study Machine Intelligenc

#### i neory

Neural Units
Neural Nets
Deep Neural Ne

## Applicati

LSTMs untapt

Reinforceme

Building Blocks

he Future

## local machine

- build your own server
- AWS
- GPU(s) / TPU(s)

Tech Velocity /ision Case Study Machine Intelligence

#### l heory

Neural Units Neural Nets Deep Neural Ne

Application

#### ConvNets LSTMs

untapt Reinforceme

**Building Blocks** 

The Futur

# Hardware

- local machine
- build your own server
- AWS
- GPU(s) / TPU(s)

Tech Velocity Vision Case Study Machine Intelligence

#### rneory

Neural Units Neural Nets Deep Neural Ne

## Application

LSTMs untapt

Building Blocks

Building Bloc

The Future

# Hardware

- local machine
- build your own server
- AWS
- GPU(s) / TPU(s)

# Hardware

#### Antecedent

rech velocity Vision Case Study Machine Intelligenc

#### neory

Neural Units Neural Nets Deep Neural Ne

## Applicati

LSTMs untapt

Building Blocks

Dulluling Dioc

- local machine
- build your own server
- AWS
- GPU(s) / TPU(s)

#### Antecedents

Tech Velocity
Vision Case Study

### Theory

Neural Units
Neural Nets
Deep Neural Ne

# Application ConvNets

LSTMs

Reinforceme

**Building Blocks** 

The Future

# Resources for Human Learning



#### Deep Learning

First Steps. For people in New York, I founded a **Deep Learning Study Group**. If you're further afield, you can track our progress via GitHub. Otherwise, get a lay of the land from:

- · the sequence of courses suggested by Greg Brockman, or
- · this (more comprehensive) introductory resource post from Ofir Press

Textbooks. Relative to viewing lectures, I prefer reading and working through problems. The stand-out resources for this, in the order they ought to be tackled are:

- · Michael Nielsen's e-book Neural Networks and Deep Learning
- the in-press Deep Learning textbook by Goodfellow, Bengio and Courville

Interactive Demos. Top-drawer interactive demos you can develop an intuitive sense of neural networks from are provided by:

- Chris Olah
- the illustrious Andrei Karpathy

Applications. Scroll down to see my recommendations for high-quality data sources as well as global issues in need of solutions. Problems worth solving with deep learning approaches in particular are curated by OpenAI.

Academic Papers. If you're looking for the latest deep learning research, bookmark:

- · Flood Sung's roadmap for deep learning papers
- · Adit Deshpande's list of nine key papers
- this thorough, subcategorized reading list
- Karpathy's arXiv Sanity Preserver
- · GitXiv for open-source implementations of popular arXiv papers



Jon Krohn, Cajoler of Datums

Home

Posts Resources

Publications

Talks

Applications

Academia Photography

Quotations

Contac



#### Anteceden

Tech Velocity
Vision Case Study

#### Theory

Neural Units
Neural Nets
Deep Neural N

### Applicatio

LSTMs
untapt
Reinforcement
Building Blocks

The Future

# Jeanne Calment





#### Antecedente

Tech Velocity Vision Case Study

#### Theory

Neural Units
Neural Nets
Deep Neural Ne

# Application ConvNets

untapt Reinforcemen

The Future

# Jeanne Calment

(1875-1997 — i.e., 122 years)



1896 1996



# Life in the Year 2138

#### **Antecedents**

Tech Velocity
Vision Case Study
Machine Intelligence

#### heory

Neural Units
Neural Nets
Deep Neural I

#### Applica

ConvNets LSTMs untapt Reinforcement Building Blocks



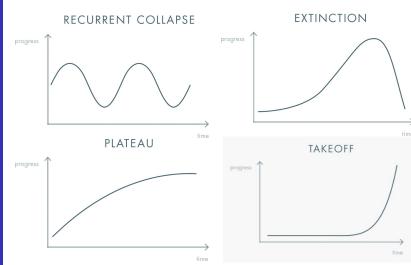


#### Antecedents

Tech Velocity
Vision Case Study

# Theor

Neural Units Neural Nets Deep Neural Ne


# Applicatio

LSTMs untapt

Reinforcement Building Block

The Future

# Thiel & Masters (2014)



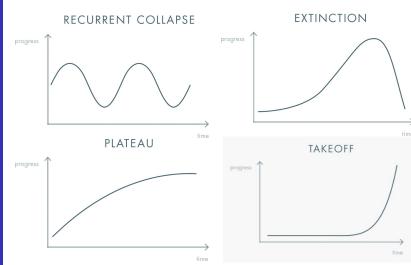


#### Antecedents

Tech Velocity
Vision Case Study

# Theor

Neural Units Neural Nets Deep Neural Ne


# Applicatio

LSTMs untapt

Reinforcement Building Block

The Future

# Thiel & Masters (2014)



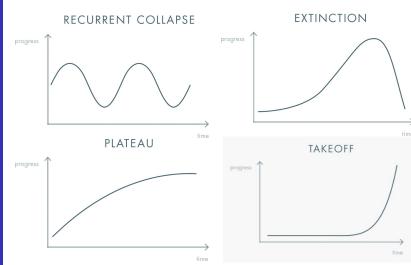


#### Antecedents

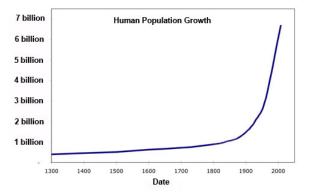
Tech Velocity
Vision Case Study

# Theor

Neural Units Neural Nets Deep Neural Ne


# Applicatio

LSTMs untapt


Reinforcement Building Block

The Future

# Thiel & Masters (2014)

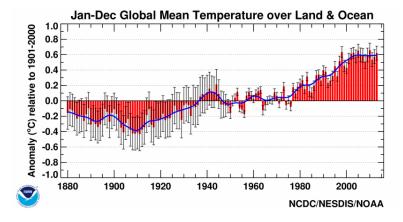








#### Antecedents


Tech Velocity
Vision Case Study
Machine Intelligence

#### Theor

Neural Units Neural Nets Deep Neural Ne

# Application ConvNets

untapt Reinforcement





#### Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

## Theory

Neural Units Neural Nets Deep Neural Nets

## Applicatio

untapt Reinforcemen

Building Block

The Future

### Still lots to go around

Nuclear-warhead stockpile, '000



†Strategic Offensive Reductions Treaty | \$1 strategic Arms Reduction Treaty | \$1 strategic Offensive Reductions Treaty | \$1 strategic Offensive Reductions Treaty | \$1 strategic Arms Reduction Trea

Source: Bulletin of the Atomic Scientists

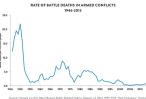
#### Antecedents

Vision Case Study
Machine Intelligence

Neural Units
Neural Nets
Deep Neural Ne

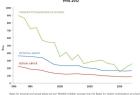
## Applicatio

untapt


Reinforcemen Building Block

The Future

# Pinker & Mack (2014)














Sources: Physical and sexual phase, National Child Alups and Neplics Data System, analyzed by Deel Highests 2014, in "Seeds in Child Wellers", Proposition on the Carryor Institute Policy Series, Metric 30, 2014. Underhander at shock in "Seeds in Child Wellers", Proposition on the Carryor Institute Policy Series, Metric 30, 2014. Underhander of a child phase of Autor Section Stoticum, Joseph For National Child Wellers and Autor Section Stotics (Stotics), August Policy National Child Analysis of Autor Section Stotics (Stotics), August Policy National Child Analysis of August Policy National Child Analysis o



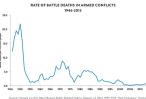
#### Antecedents

Vision Case Study
Machine Intelligence

Neural Units
Neural Nets
Deep Neural Ne

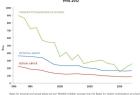
## Applicatio

untapt


Reinforcemen Building Block

The Future

# Pinker & Mack (2014)














Sources: Physical and sexual phase, National Child Alups and Neplics Data System, analyzed by Deel Highests 2014, in "Seeds in Child Wellers", Proposition on the Carryor Institute Policy Series, Metric 30, 2014. Underhander at shock in "Seeds in Child Wellers", Proposition on the Carryor Institute Policy Series, Metric 30, 2014. Underhander of a child phase of Autor Section Stoticum, Joseph For National Child Wellers and Autor Section Stotics (Stotics), August Policy National Child Analysis of Autor Section Stotics (Stotics), August Policy National Child Analysis of August Policy National Child Analysis o



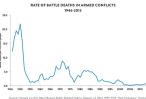
#### Antecedents

Vision Case Study
Machine Intelligence

Neural Units
Neural Nets
Deep Neural Ne

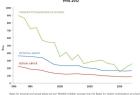
## Applicatio

untapt


Reinforcemen Building Block

The Future

# Pinker & Mack (2014)














Sources: Physical and sexual phase, National Child Alups and Neplics Data System, analyzed by Deel Highests 2014, in "Seeds in Child Wellers", Proposition on the Carryor Institute Policy Series, Metric 30, 2014. Underhander at shock in "Seeds in Child Wellers", Proposition on the Carryor Institute Policy Series, Metric 30, 2014. Underhander of a child phase of Autor Section Stoticum, Joseph For National Child Wellers and Autor Section Stotics (Stotics), August Policy National Child Analysis of Autor Section Stotics (Stotics), August Policy National Child Analysis of August Policy National Child Analysis o



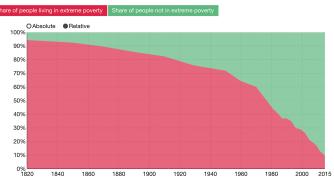


#### Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

### Theor

Neural Units Neural Nets Deep Neural Ne


## Applicatio

untapt Reinforcement

Building Blocks
The Future

# World population living in extreme poverty, 1820 to 2015





Data source: World Poverty in absolute numbers (Max Roser based on World Bank and Bourguignon and Morrisson (2002))



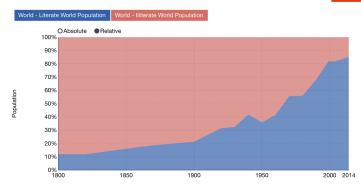


#### Antecedents

Tech Velocity
Vision Case Study

## Theor

Neural Units
Neural Nets
Deep Neural Net


### Applicatio

untapt Reinforcement

Building Blocks
The Future

# Literate and illiterate world population, 1800 to 2014





Data source: Literate World Population (Our World In Data based on OECD and UNESCO)



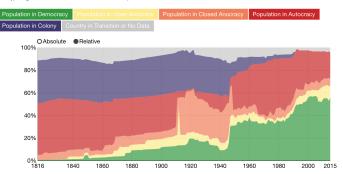
#### Antecedents

Tech Velocity
Vision Case Study

## Theory

Neural Units
Neural Nets
Deep Neural Nets

#### Applicatio ConvNets


Reinforcemen

The Future

## Number of world citizens living under different political regimes

OurWorld in Data

The Polity IV score captures the type of political regime for each country on a range from -10 (full autocracy) to +10 (full democracy). Regimes that fall into the middle of this spectrum are called anocracies.



Data source: World Population by Political Regime they live in (by Our World In Data)





#### Antecedents

Vision Case Study

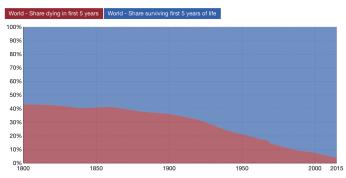
Machine Intelligence

# Theory

Neural Units
Neural Nets
Deep Neural Net

## Applicatio

LSTMs


Reinforcemen Building Block

The Future

# Global child mortality, 1800 to 2015

Share of the world population dying and surviving the first 5 years of life.





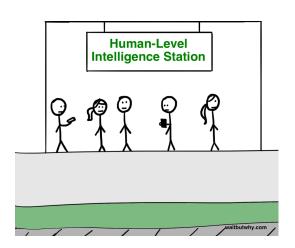
Data source: Global child mortality (since 1800) based on Gapminder and World Bank



#### Antecedents

Vision Case Study

Machine Intelligence


#### Theory

Neural Units
Neural Nets
Deep Neural N

### Applicat

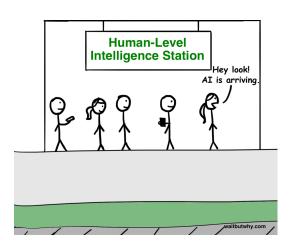
ConvNets LSTMs untapt Beinforcemen

Building Block



#### Antecedents

Tech Velocity Vision Case Study


#### Theor

Neural Units
Neural Nets
Deep Neural N

#### Applicat

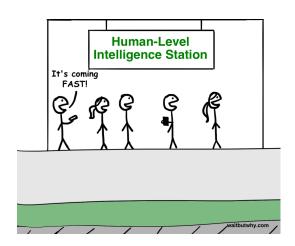
ConvNets LSTMs untapt Beinforcemen

Building Block



#### Antecedents

Vision Case Study
Machine Intelligence


#### Theory

Neural Units
Neural Nets
Deep Neural N

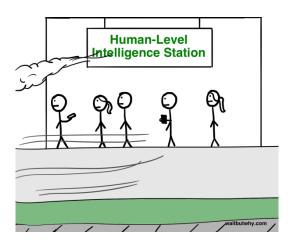
#### Applicat

ConvNets LSTMs untapt Reinforcemen

Building Block



#### Antecedents


Tech Velocity
Vision Case Study
Machine Intelligence

#### Theory

Neural Units
Neural Nets
Deep Neural N

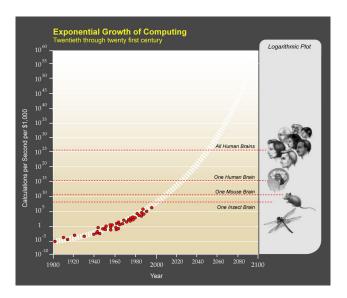
### **Applicat**

ConvNets
LSTMs
untapt
Reinforcement
Building Blocks

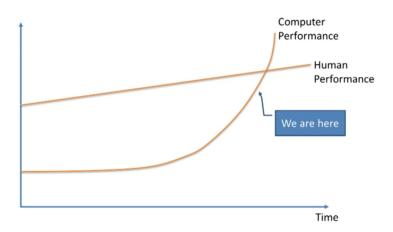


#### Anteceden

Tech Velocity
Vision Case Study


#### Γheory

Neural Units
Neural Nets
Deep Neural N


### Applica

ConvNets LSTMs untapt

Reinforcement





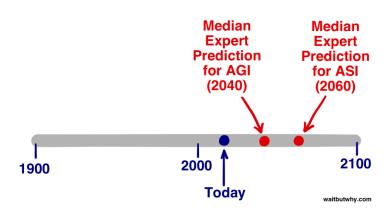




#### Antecedents

Vision Case Study
Machine Intelligence

#### Theory


Neural Units
Neural Nets

#### Applica

ConvNets LSTMs

untapt

Building Block





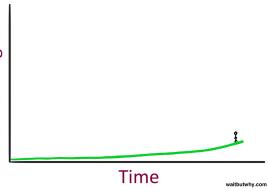
#### Antecedent

Tech Velocity
Vision Case Study

#### Γheorv

Neural Units
Neural Nets
Deep Neural Ne

#### Applicati


ConvNets LSTMs

untapt

Reinforcemer

The Future

Human Progress

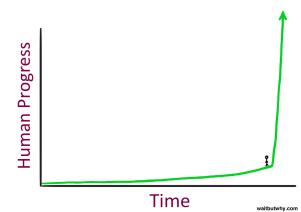




#### Antecedents

Tech Velocity
Vision Case Study

#### heorv


Neural Units
Neural Nets
Deep Neural N

#### A ..... I' .... A' ...

ConvNets

LSTIVIS

Reinforcemer



