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Hubel & Wiesel (1959)
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Visual Cortices

Parietal Lobe
Unreasonable
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Neurocognitron
Fukushima (1980)

Unreasonable
Effectiveness of DL
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MNIST Digits & LeNet-5

LeCun, Boutou, Bengio & Haffner (1998)
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Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
constrained to be identical
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LeNet-5

LeCun, Boutou, Bengio & Haffner (1998)
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ImageNet Classification Error
ILSVRC: 1.4m, 1k object classes

Unreasonable
Effectiveness of DL

ILSVRC top-5 error on ImageNet
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AlexNet
Krizhevsky, Sutskever & Hinton (2012)
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Effectiveness of DL
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Interactive Visualization of an
Artificial Neural Network

[TensorFlow Playground]



http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=1&seed=0.17272&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false

Deep
Learning

Hardware Options for DL

of DL

e local machine




Deep
Learning

Hardware Options for DL

of DL

e local machine
e (Tesla K80 /V100) cloud instance




Deep
Learning

Hardware Options for DL

e local machine
e (Tesla K80 /V100) cloud instance
e (GTX 1080ti) monster box




Deep
Learning

Unreasonable
Effectiveness of DL

GEFORCE i
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https://insights.untapt.com/building-the-magical-data-science-box-e933656d625e
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Jupyter Notebooks

+ Docker + Nvidia GPU + TensorFlow

Unreasonable
Effectiveness of DL

[Dockerfile]



https://github.com/the-deep-learners/TensorFlow-LiveLessons/blob/master/Dockerfile-gpu
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A Shallow Neural Network

TensorFlow
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[shallow notebook]



https://github.com/the-deep-learners/TensorFlow-LiveLessons/blob/master/notebooks/shallow_net_in_keras.ipynb
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Essential Theory Il
Cost Functions, Gradient Descent, and
Backpropagation

How DL Works

...whiteboard...
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An Intermediate Neural Network

[intermediate notebook]



https://github.com/the-deep-learners/TensorFlow-LiveLessons/blob/master/notebooks/intermediate_net_in_keras.ipynb
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© © ©® W pata Science Resources — Jo x

& C' @ Secure | https://www.jonkrohn.com/resources/

How DL Works

Open Data Sources

To train a powerful model, the larger the data set, the better -- if its well-organised and open, that's ideal. The
following repositories are standouts that meet all these criteria:

Data.gov (home of >150k US govemment-related datasets),

Goveode, a collection of government open source projects,

the Open Data Stack Exchange, and

\ 4 « this curated list of 'awesome' public datasets

this well-annotated list of data sets for natural language processing

Jon Krohn, Cajoler of Datums

for biomedical and health data specifically, check out:

o this University of Minnesota resource

Home )

o this Medical Data for Machine Learning GitHub repo
Resources
Posts For machine learning models that require a fot of labelled data, check out
Publications
Talks « UC Irvine's repository

« Yahoo's massive 13TB data set comprised of 100 billion user interactions with news items

Academia « Google's image and video data sets
Applications « Luke de Oliveira's Greatest Public Datasets for Al blog post
Quotations « CrowdFlower's Data for Everyone
Contact

Finally, here are extensive pages on importing data from the Web into R, provided by CRAN and MRAN.

s " e
. .
. .
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Essential Theory Il

Weight Initialization and Mini-Batches

Building Deep

[neurons notebook]



https://github.com/the-deep-learners/TensorFlow-LiveLessons/blob/master/notebooks/first_tensorflow_neurons.ipynb

Deep
Learning

Building Deep

10°

Essential Theory IV

Unstable Gradients and Avoiding Overfitting

Speed of learning: 4 hidden layers

—— Hidden layer 1

Hidden layer 2
| — Hidden layer 3
Hidden layer 4

100 200 300 400
Number of epochs of training

500
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Essential Theory IV

Unstable Gradients and Avoiding Overfitting
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A Deep Neural Network

[deep notebook]



https://github.com/the-deep-learners/TensorFlow-LiveLessons/blob/master/notebooks/deep_net_in_keras.ipynb

Deep
Learning

Building Deep

TensorBoard
and the Interpretation of Model Outputs
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[ pata download links
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Intro to ConvNets

for Visual Recognition

[deepvis]



http://viewpure.com/AgkfIQ4IGaM?start=0&end=0

Deep
Learning

LeNet-5

Classic ConvNet Architecture |

Machine Vision

[notebook]


https://github.com/the-deep-learners/TensorFlow-LiveLessons/blob/master/notebooks/lenet_in_keras.ipynb
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AlexNet
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[notebook]



https://github.com/the-deep-learners/TensorFlow-LiveLessons/blob/master/notebooks/alexnet_in_keras.ipynb
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Machine Vision

Transfer Learning
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Leading DL Libraries

A Comparison

Caffe Torch MXNet TensorFlow
language Python, Matlab Lua, C Python, R, C++ Python, R, C++
TensorFlow Intro PyTorch Julia, Matlab C, Java, Go
JavaScript, Go
Scala, Perl

pre-trained models
parallel GPUs: data
parallel GPUs: model
source code

for RNNs

high-level APIs Keras Keras, TFLearn
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DL with TensorFlow

©® TensorFlow

Deep Learning with TensorFlow




Deep
Learning

[LeNet-5in TF]

DL with TensorFlow



https://github.com/the-deep-learners/TensorFlow-LiveLessons/blob/master/notebooks/lenet_in_tensorflow.ipynb
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Improving Model Performance

© Xavier Glorot initialization

DL with TensorFlow
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DL with TensorFlow

Improving Model Performance

© Xavier Glorot initialization

® problem simplification

@ layer architecture

@ cost function

@ avoid overfitting

@ variable learning rate n

@ epochs

@ regularization parameters, e.g., A
©® mini-batch size
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DL with TensorFlow

Improving Model Performance

© Xavier Glorot initialization

® problem simplification

@ layer architecture

@ cost function

@ avoid overfitting

@ variable learning rate n

@ epochs

@ regularization parameters, e.g., A
©® mini-batch size

@ grid-search automation
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Tuning Hyperparameters

..inlenet in keras.ipynb:

: model = Sequential()

model.add(Conv2D(32, kernel size=(3, 3), activatioi

model.add(Conv2D(64, kernel size=(3, 3), activatiol
MaxPp ool _size=(2, 2)))

‘relu’, input_shape=(28, 28, 1)))
relu'))

DL with TensorFlow

..inlenet in tensorflow.ipynb:

# convolutional and max-pooling layers:
conv_1 = conv2d(square_x, weights['W_cl1'], biases['b_cl'])

# max pooling layer: : = )
conv_2 = conv2d(conv_1, weights['W_c2'], biases['b c2'])

Rool Size =
lmpilayeridropout = 0.25 |

[pool 1 = tf.nn.dropout(pool 1, 1-i

dropout)

# dense layer:
n.dense = 128
ldenseilayeridropout = 0.5|

# dense layer:
flat = tf.reshape(pool_1, [-1, weights['W_dl’

1.get_shape().as_list()[0]])
- “1h)

n.dropout (dense_1, 1-dense_dropout)
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A history of language technologies

Scientists from
IBM and
Georgetown
demonstrate

a limited
machine-
translation
system

1954 60

1965

John Pierce’s highly
critical report on
language technologies
published. Funding
languishes for decades

“2001: A Space Odyssey”
released

No US government
research funding for

Microsoft speech-recognition
Dawn of “common system reaches human parity

task” method.
Researchers share
data, agree on
common methods
of evaluation

Siri debuts on iPhone

Statistics-based version of
Google Translate launched

machine translation
or speech recognition
I

70 75 80

85 90 g 2000 05 10

Google releases neural-net machine
translation for eight language pairs
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Translation method | Phrase-basedt | Neural-networkt | Human

A3 4 5 Perfect translation=6
Spanish | 1
English«EFrench I i
Chinese 1 1
Spanish — English | i
French —» English i i

Chinese — English | |
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Word Representations
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Word Representations
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word2vec

[vse 2000]

[word2viz]



https://lamyiowce.github.io/word2viz/

Deep
Learning

NL Data Preprocessing

Best Practices

[NLP Best Practices notebook]



https://github.com/the-deep-learners/TensorFlow-LiveLessons/blob/master/notebooks/natural_language_preprocessing_best_practices.ipynb

Recurrent Neural Networks
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Recurrent Neural Networks

[RNN notebook]



https://github.com/the-deep-learners/TensorFlow-LiveLessons/blob/master/notebooks/rnn_in_keras.ipynb

Bidirectional LSTMs
MN

T -0

\.23
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Bidirectional LSTMs

[BILSTM notebook]



https://github.com/the-deep-learners/TensorFlow-LiveLessons/blob/master/notebooks/stacked_bidirectional_lstm.ipynb

Deep
Learning

Parallel Network Architectures

[multi-ConvNet notebook]



https://github.com/the-deep-learners/TensorFlow-LiveLessons/blob/master/notebooks/multi_convnet_architectures.ipynb
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@ Advanced Topics

Generative Adversarial Networks
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GANs

-M'l'[;i-

man woman
with glasses W|thout glasses without glasses

Results of doing the same
arithmetic in pixel space




Deep
Learning

Karras et al. at NVIDIA

ICLR 2018 submission

[CelebA-HQ Latent Space Interpolations]



https://www.youtube.com/watch?v=XOxxPcy5Gr4&feature=youtu.be&t=1m49s

Deep
Learning

[Quick, Draw!]



https://quickdraw.withgoogle.com/

Deep
Learning
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10: Deep Reinforcement Learning
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Deep Q-Learning

Mnih et al. (2015)
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https://www.youtube.com/watch?v=6kO4eZWeKOM
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Deep Q-Learning

Mnih et al. (2015)
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https://www.youtube.com/watch?v=6kO4eZWeKOM
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[Atari Games]


https://www.youtube.com/watch?v=6kO4eZWeKOM

Deep
Learning

Deep RL

AlphaGo

Silver et al. (2016)

Google DeepMind £6% AlphaGo
Challenge Match

8-15March 2016
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Silver et al. (2017)
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AlphaGo Zero

Silver et al. (2017)

50000
40000 -
30000 -

Deep RL
20000 -

Power Consumption (TDP)

10000 -

AlphaGo Fan AlphaGo Lee AlphaGo Master AlphaGo Zero
(176 GPUs) (48 TPUs) (4TPUs) (4 TPUs)
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[OpenAl Universe]

[Google DeepMind Lab]



https://openai.com/blog/universe/
https://deepmind.com/blog/open-sourcing-deepmind-lab/

Deep
Learning

The Al Revolution

Hasn’t Even Begun

Al Revolution
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Al Revolution

© data doubling every 18 months
® processing power cost halving every two years
® cheap sensors appearing everywhere

@ Deep Learning techniques refined in academia and in
industry
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Hey look!
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Exponential Growth of Computing
Twentieth through twenty first century
Logarithmic Plot

All Human Brains

One Human Brain

Al Revolution One Mouse Brain

o
8
©
&
®
2
°
2
&
8
ko3
172}
o]
8
@
2
S
5
=
2
<3
o

One Insect Brain

92 9 981 2020 20 2060 208
1900 1920 1940 1960 1980 2000 020 040 060 080 2100

Year




Deep
Learning

Al Revolution

Computer
| Performance

/
¥ s Himian
Performance

Time




Deep
Learning

Median Median
Expert Expert
Prediction Prediction
for AGI for ASI
(2040) (2060)
| o ® O |
Al Revolution 1 900 2000 T 21 00

Today

waitbutwhy.com




Deep
Learning

Al Revolution

Human Progress

I

waitbutwhy.com

Time




Deep
Learning

Al Revolution

Human Progress

Time

waitbutwhy.com




	Introduction
	Unreasonable Effectiveness of Deep Learning

	Theory
	How Deep Learning Works
	Building & Training a Deep Network
	Machine Vision

	TensorFlow
	TensorFlow Intro
	Deep Learning with TensorFlow

	Advanced Topics
	Natural Language Processing
	Generative Adversarial Networks
	10: Deep Reinforcement Learning

	The AI Revolution

	anm0: 


