Conv Layers

Deeper CNNs

Learning

Object Detection

Segmentation

Cancula Nata

Machine Vision

Slides available at jonkrohn.com/talks

March 2nd, 2022

Convolutional Layers

Conv Layers

Deeper CNNs

Transfer Learning

Object Detectior

Image Segmentation

- - 3

1 Convolutional Layers

2 Convolutional Neural Networks

3 Much Deeper CNNs

4 Transfer Learning

Object Detection

6 Image Segmentation

7 Capsule Networks

Convolutional Layers

2 Convolutional Neural Networks

3 Much Deeper CNNs

Convolutional Layers

2 Convolutional Neural Networks

3 Much Deeper CNNs

4 Transfer Learning

Conv Layers

Convolutional Layers

2 Convolutional Neural Networks

3 Much Deeper CNNs

4 Transfer Learning

6 Object Detection

6 Image Segmentation

Capsule Networks

Jon Krohn

Object Detection

Image Segmentation

Segmentation

Capsule Nets

Conv Layers

1 Convolutional Layers

_ `,

2 Convolutional Neural Networks

Object Detectio

3 Much Deeper CNNs

Image Segmentatio

4 Transfer Learning

Cansule Ne

6 Object Detection

6

6 Image Segmentation

7

Capsule Networks

Convolutional Layers

2 Convolutional Neural Networks

3 Much Deeper CNNs

4 Transfer Learning

5 Object Detection

Image Segmentation

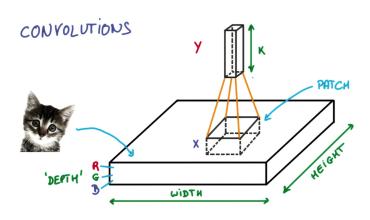
Capsule Networks

Conv Layers

Convolutional Layers

3 Much Deeper CNNs

Conv Layers


Deeper CNNs

Transfer Learning

Object Detection

Image Segmentation

Capsule Nets

DeepVis

Conv Layers

ConvNet

Deeper CNN

Transfer Learning

Object Detection

Detection

Segmentation

Capsule Nets

[deepvis]

Convolution Demo

Conv Layers

00....

leeper CNN:

Transfer Learning

Object Detection

Image

Capsule Nets

from the illustrious [Andrej Karpathy]

Conv Layers

Danner CNIA

Deeper Oivi

Learning

Object Detectior

Image Segmentation

Cancula Nat

Activation map = $\frac{D-F+2P}{S} + 1$

- D is the size of the image (either width or height, depending on whether you're calculating the width or height of the activation map)
- F is the size of the filter
- P is the amount of padding, and
- and S is the stride length.

Conv Layers

Danier ONIA

Deeper ON

Learning

Object Detection

Image Segmentation

Capsule Nets

Activation map = $\frac{D-F+2P}{S} + 1$

- D is the size of the image (either width or height, depending on whether you're calculating the width or height of the activation map)
- F is the size of the filter
- P is the amount of padding, and
- and S is the stride length.

Conv Layers

Deeper CNN

Transfer Learning

Object Detection

Image Segmentation

Cansule Net

Activation map = $\frac{D-F+2P}{S} + 1$

- D is the size of the image (either width or height, depending on whether you're calculating the width or height of the activation map)
- F is the size of the filter
- P is the amount of padding, and
- and S is the stride length.

Conv Layers

Deeper CNN

Transfer Learning

Object Detectior

Segmentation

Cansule Net

Activation map = $\frac{D-F+2P}{S} + 1$

- D is the size of the image (either width or height, depending on whether you're calculating the width or height of the activation map)
- F is the size of the filter
- P is the amount of padding, and
- and S is the stride length.

ConvNets

Daraman ONINI

Learning

Detection

Segmentation

- - 3

ion

4 Transfer Learning

3 Much Deeper CNNs

2 Convolutional Neural Networks

6 Object Detection

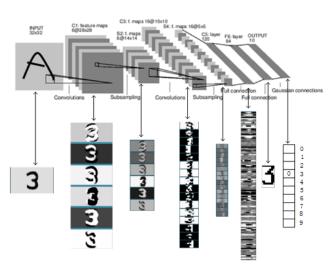
6 Image Segmentation

7 Capsule Networks

LeNet-5

Conv Layers

ConvNets


Jooper CNN

Transfer

Object Detection

Image Segmentation

Capsule Net

Jon Krohn

let's make our [deep net] convolutional!

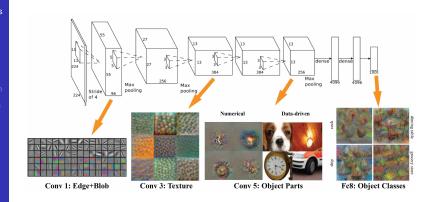
Deeper CNNs

3 Much Deeper CNNs

Conv Layers

OUTIVIVELS

Deeper CNNs


Transfer Learning

Object Detectior

Segmentation

Capsule Net

AlexNet Conv-Pool Blocks

[AlexNet] from scratch

Conv Layers

ConvNets

Deeper CNNs

Transfer Learnin

Object Detection

Image Segmentation

Cansule Net

VGGNet (Simonyan & Zisserman, 2014)

Exercise III

- build VGGNet from AlexNet notebook
- be able to verbalize all Arsenal (Theory I-IV) items

Conv Layers

ConvNets

Deeper CNNs

Transfei Learnin

Object Detectio

Image Segmentation

Capsule Net

VGGNet (Simonyan & Zisserman, 2014)

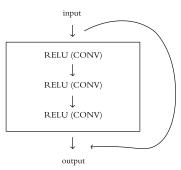
Exercise III

- build VGGNet from AlexNet notebook
- be able to verbalize all Arsenal (Theory I-IV) items

Conv Lavers

Deeper CNNs

Transfer Learning


Object Detection

Sogmontation

Cansule Nets

Residual Networks

Hardt & Ma, 2018

Conv Lavers

Conv Layers

Deeper CNNs

Transfer Learning

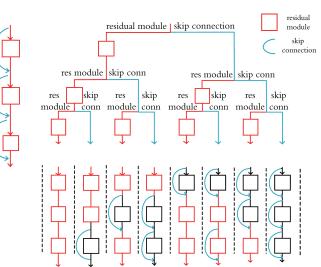

Object Detectior

Image Segmentation

Capsule Net

Residual Networks

Hardt & Ma, 2018

3 Much Deeper CNNs

4 Transfer Learning

Ion Krohn

Learning

Transfer

Conv Layers

ConvNets

Deeper CNNs

Transfer Learning

Object Detectio

Image Segmentation

oog...o...a..o.

Capsule Nets

[transfer learning Jupyter notebook]

Other examples:

- [toy-sized]
- [pre-trained model weights in Keras]
- [beefy bottleneck features example]

Conv Layers

Camullata

Deeper CNNs

Transfer Learning

Object Detection

Seamentation

oog...o...a..o.

Capsule Nets

[transfer learning Jupyter notebook]

Other examples:

- [toy-sized]
- [pre-trained model weights in Keras]
- [beefy bottleneck features example]

Conv Layers

ConvNets

Deeper CNNs

Transfer Learning

Object Detection

Image Segmentation

oog...o...a..o

Capsule Nets

[transfer learning Jupyter notebook]

Other examples:

- [toy-sized]
- [pre-trained model weights in Keras]
- [beefy bottleneck features example]

Object Detection

3 Much Deeper CNNs

6 Object Detection

Machine Vision Applications

Conv Layers

Conv Layors

Deeper CNNs

Transfer Learning

Object Detection

Segmentation

-

"BALLOONS"

OBJECT DETECTION

SEMANTIC SEGMENTATION

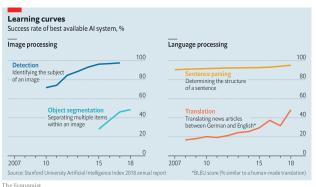
INSTANCE SEGMENTATION

Object Detection

Artificial intelligence is changing every aspect of war

A new type of arms race could be on the cards

Print edition | Science and technology Sep 7th 2019

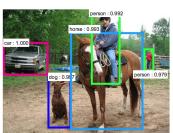


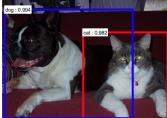
Object Detection

Object Detection

Conv Lavers

30....


Deeper CNN


Transfer Learning


Object Detection

Image Segmentation

Capsule Nets

rohr

Typical Process

Object Detection

- Identify region of interest (ROI)

Typical Process

Object Detection

- Identify region of interest (ROI)
- Perform automatic feature extraction on ROI

Typical Process

Object Detection

- Identify region of interest (ROI)
- Perform automatic feature extraction on ROI
- 3 Classify ROI

Seminal Architectures

Conv Layers

ConvNets

Deeper CNNs

Transfer Learning

Object Detection

Image Segmentation

Segmentatio

R-CNN (Girshick et al., 2013)

- Fast R-CNN (Girshick et al., 2015)
- Faster R-CNN (Ren et al., 2015)
- YOLO, YOLO9000 & YOLOv3 (Redmon et al., 2015-8)

Seminal Architectures

Object Detection

R-CNN (Girshick et al., 2013)

Fast R-CNN (Girshick et al., 2015)

YOLO, YOLO9000 & YOLOv3 (Redmon et al., 2015-8)

Ion Krohn

Seminal Architectures

Object Detection

R-CNN (Girshick et al., 2013)

- Fast R-CNN (Girshick et al., 2015)
- Faster R-CNN (Ren et al., 2015)
- YOLO, YOLO9000 & YOLOv3 (Redmon et al., 2015-8)

Ion Krohn

Seminal Architectures

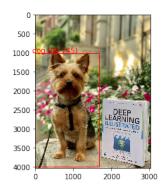
Object Detection

R-CNN (Girshick et al., 2013)

- Fast R-CNN (Girshick et al., 2015)
- Faster R-CNN (Ren et al., 2015)
- YOLO, YOLO9000 & YOLOv3 (Redmon et al., 2015-8)

Ion Krohn

[YOLOv3 Jupyter notebook]


Conv Layers

Transfer Learning

Object Detection

Segmentation

Capsule Nets

GitHub repositories:

- [Mask R-CNN]
- [RetinaNet]
- [YOLOv3]

[YOLOv3 Jupyter notebook]

Conv Layers

Transfer

Object

Detection

Segmentation

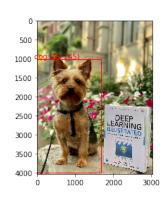
Capsule Net

GitHub repositories:

- [Mask R-CNN]
- [RetinaNet]
- [YOLOv3]

[YOLOv3 Jupyter notebook]

Conv Layer


. . .

Transfer Learning

Object Detection

Image Segmentation

Capsule Net

GitHub repositories:

- [Mask R-CNN]
- [RetinaNet]
- [YOLOv3]

Outline

Conv Layers

Convolutional Layers

_ .

2 Convolutional Neural Networks

Object

3 Much Deeper CNNs

Image

4 Transfer Learning

Segmentation

6 Object Detection

6

6 Image Segmentation

7

Capsule Networks

Machine Vision Applications

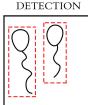
Conv Layers

Conv Layers

Deeper CNNs

Transfer Learning

Object Detection


Image Segmentation

CLASSIFICATION


"BALLOONS"

OBJECT

SEGMENTATION

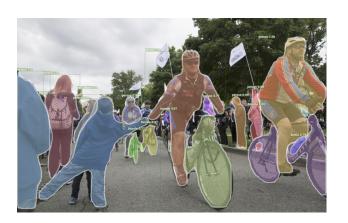
SEMANTIC

INSTANCE

Conv Layers

Conv Layers

Deeper CNNs


Transfe Learnin

Object Detection

Image Segmentation

Capsule Net

Image Segmentation

Seminal architectures:

- Mask R-CNN
- U-Net

Conv Lavers

Conv Layers

Deener CNNs


Transfe Learnin

Object Detection

Image Segmentation

Capsule Net

Image Segmentation

Seminal architectures:

- Mask R-CNN
- U-Net

Conv Layers

ConvNets

Deeper CNNs

Transfer Learnin

Object Detection

Image Segmentation

Cansule Net

Mask R-CNN (He et FAIR, 2017)

- Taster R-CNN model proposes ROIs
- 2 ROI classifier predicts class of object in ROI and refines bounding box
- 3 extract CNN's feature maps from within bounding box
- fully CNN model outputs object-specific mask

Conv Layers

CanyNata

Deeper CNN

Transfer Learnin

Object Detection

Image Segmentation

Capsule Net

Mask R-CNN (He et FAIR, 2017)

- Taster R-CNN model proposes ROIs
- 2 ROI classifier predicts class of object in ROI and refines bounding box
- 3 extract CNN's feature maps from within bounding box
- fully CNN model outputs object-specific mask

Conv Layers

Deeper CNN

Transfer Learnin

Object Detection

Image Segmentation

Capsule Net

Mask R-CNN (He et FAIR, 2017)

- 1 Faster R-CNN model proposes ROIs
- 2 ROI classifier predicts class of object in ROI and refines bounding box
- 3 extract CNN's feature maps from within bounding box
- 4 fully CNN model outputs object-specific mask

Conv Layers

D 01111

Townston

Object

Image

Segmentation

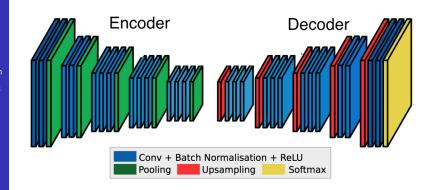
Capsule Nets

Mask R-CNN (He et FAIR, 2017)

- 1 Faster R-CNN model proposes ROIs
- 2 ROI classifier predicts class of object in ROI and refines bounding box
- 3 extract CNN's feature maps from within bounding box
- 4 fully CNN model outputs object-specific mask

Conv Layers

Deeper CNN


Transfer Learning

Object Detectior

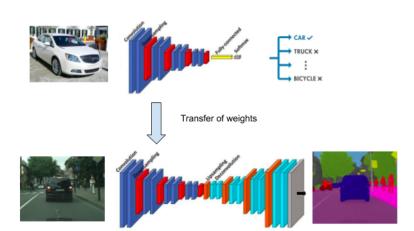
Image Segmentation

Capsule Net

Contracting Path + Expanding Path

U-Net Transfer Learning

Conv Layers


Danier ONINI

Transfer

Object Detection

Image Segmentation

Capsule Net

Conv. Layore

Conv Layers

Deener CNNs

Transfe

Object Detection

Image Segmentation

Degmentation

VGGNet U-Net

Validation output after 1 & 9 epochs

[Jupyter notebook]

ResNet U-Net

VGG after 9 epochs & ResNet after 4

Conv Layers

Deeper CNNs

Transfer Learnin

Detection

Image Segmentation

Segmentatic

[Jupyter notebook]

Outline

Conv Layers

Convolutional Layers

Deeper Civit

2 Convolutional Neural Networks

Object Detectio

3 Much Deeper CNNs

Segmentatio

4 Transfer Learning

Capsule Nets

6 Object Detection

6 Image Segmentation

7 Capsule Networks

Capsule Networks
Sabour & Hinton, 2017

Conv Layers

. . . .

Deeper CNNs

Transfer Learning

Object Detectior

Segmentation

Capsule Nets

