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What are you?

* Developer / Engineer

» Scientist / Analyst / Statistician / Mathematician
 Combination of the Above

e Other
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What is your level of familiarity with Deep Learning?

* Little to no exposure to deep learning

 Some deep learning theory

* Deep learning theory + experience with a deep
learning library

* Deep learning theory + experience with
TensorFlow/Keras
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TensorFlow 2.0 vs PyTorch

e Vision Analogy for Deep Learning
* Deep Learning Families
* Deep Learning Libraries
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Neocognitron (Fukushima, 1980)
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Fig. 2. Schematic diagram illustrating the

/ interconnections between layers in the
neocognitron
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LeNet-5 (LeCun et al., 1998)
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Traditional ML vs Deep Learning

TML

Deep
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Viola & Jones (2001)
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AlexNet (Krizhevsky et al., 2012)
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If a voice recognition algorithm is fed audio of speech as inputs,
given corresponding text as the outputs (labels) to learn, and
no features are explicitly programmed, is this a:

* Traditional Machine Learning Algorithm
* Deep Learning Algorithm
* | Don't Know
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e Vision Analogy for Deep Learning
* Deep Learning Families
* Deep Learning Libraries
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ConvNets: Convolutional Networks
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ConvNets: Convolutional Networks
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RNNs: Recurrent Neural Networks
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GANSs: Generative Adversarial Networks
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GANSs: Generative Adversarial Networks
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Deep Reinforcement Learning
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If you were designing an algorithm to learn to play Tetris by
maximizing its score, which of these Deep Learning
approaches would be most appropriate?

Convolutional Neural Network
Recurrent Neural Network
Deep Reinforcement Learning
Generative Adversarial Network
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If you were designing an algorithm to recognise tumours in
medical images, which of these Deep Learning approaches
would be most appropriate?

Convolutional Neural Network
Recurrent Neural Network
Deep Reinforcement Learning
Generative Adversarial Network
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If you were designing an algorithm to predict stock price
movements based on time series data, which of these Deep
Learning approaches would be most appropriate?

Convolutional Neural Network
Recurrent Neural Network
Deep Reinforcement Learning
Generative Adversarial Network
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TensorFlow 2.0 vs PyTorch

e Vision Analogy for Deep Learning
* Deep Learning Families
* Deep Learning Libraries
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Leading Deep Learning Libraries

Caffe Torch MXNet TensorFlow

Language Python, Matlab Lua, C Python, R, C++ Python, C, C++
Julia, Matlab Java, Go, JS, Swift
JavaScript, Go  (Haskell, Julia, R,

Scala, Perl Scala, Rust, C#)
Programming Style Symbolic Imperative Imperative Imperative (in 2.0)
Parallel GPUs: Data Yes Yes Yes Yes
Parallel GPUs: Model Yes Yes Yes
Pre-Trained Models Model Zoo Model Zoo Model Zoo github.com/tensorflow/

models

High-Level APIs PyTorch in-built Keras
Particular Strength CNNs interactivity production deployment
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PyTorch

TensorFlow

“NumPy”, optimized for GPUs
dynamic auto-differentiation (autodiff)
debugging is easier

fast.ai API

TorchScript Just-In-Time compilation

better for interactively building models

@ Pearson

ported to Python from C++

static computational graph

Keras API
more widely adopted
TensorFlow Serving, .js, Lite, tf.data, tf.io

better for production deployments



Deep Nets in Three Libraries

demo: in TF 1.x
interactive Colab demo: in TF2.0 (bit.ly/deepNetTF)

interactive Colab demo: in PyTorch (bit.ly/deepPTdemo)
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What follow-up Deep Learning topics interest you most?

* CNNs and Machine Vision

* Natural Language Processing

* Time-Series Predictions

* Generative Adversarial Networks
 Deep Reinforcement Learning
 Something Else
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Stay in Touch

...and let me know what other topics you’d love me to teach!

jJonkrohn.com to sign up for email newsletter
twitter.com/JonKrohnLearns

medium.com/@jonkrohn

linkedin.com/in/jonkrohn
(with message mentioning today’s Live Training)
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