Deep Learning with Jon
Krohn - My Take

Course Experience

5 Saturdays, 40 hours, 10 units, 1 presentation.

Tons of Hands-on Material
Walking through concepts like Gradient Descent

Various models in Jupyter Notebooks

Ongoing Concept Map/Glossary
Highlighted all of the important terms

Easy to do more research offline

Capstone Project

Great way to tie everything together

www.floydhub.com

Fastest way to build, train, and deploy
deep learning models
~ 5& You focus on the science We'll handle the version control | I’f"i» ﬁ|
©O\Y (°l°)
(] F N 2 |
N | | -
—T T

Teams of all sizes use FloydHub to increase their Al velocity

You might be asking...

What was my capstone
project?

Can we predict

by using
plot summaries?

Can we predict ratings by the plot?

e\ EES

Non-commercial, personalized movie recommendations.

recommendations top picks --
MovieLens helps you find movles S
you v 1 like. Rate movies to buikd a

custon taste arofile, then & ¢ : - LS
MavieLens recommaends ather : AR : " | Yo g

WIKIPEDIA

The Free Encyclopedia

What if we take movie ratings from

_ ... and combine them with plot Can we predict the rating of our
MovielLens' dataset...

summaries scraped from Wikipedia? awesome screenplay???

Load dependencies and manipulate data

Our plots CSV has the movie year in the title field and a bunch of extra columns. Our movie and rating CSVs are normalized and have extra columns as well, not to mention that the ratings are all
per-user and need to be averaged. Let's use pandas to manipulate our data into a single dataframe that has ratings and plots together.

import pandas as pd
import numpy as np
import re

(oad CSVs

movies df = pd.read_csv('movie.csv')

rating_df = pd.read_csv('rating.csv')

plots_df = pd.read_csv('wiki_movie_plots_deduped.csv')

average ratings per film
grouped_ratings_df = rating_df.drop(columns=['userId']).groupby(['movield']).mean()

merge movies and ratings
joined_df = pd.merge(movies_df, grouped_ratings_df, left_on="movieId", right_on="movielId").drop(columns=['movieIld', 'genres'])

remove year from title
joined_df['title'] = joined_df['title’'].apply(lambda x: re.sub("\(\d\d\d\d\)", "", x).strip())

remove extraneous columns from plots
clean_plots_df = plots_df.drop(columns=['Release Year', "Origin/Ethnicity", 'Director', 'Cast', 'Genre', 'Wiki Page'])

merge ratings and plots
df = pd.merge(joined_df, clean_plots_df, left_on="title', right_on='Title', how='inner').drop(columns=['Title']).rename(index=5tr, columns={"Plot": "plot"})

confirm that our data looks good!
print(df.head())

Load dependencies for using Keras

import keras

from keras.datasets import imdb

from keras.preprocessing.sequence import pad_sequences
from keras.preprocessing.text import Tokenizer

from keras.models import Sequential, load model

from keras.layers import Dense, Dropout, Embedding, SpatialDropoutlD, LSTM
from keras.layers.wrappers import Bidirectional

from keras.callbacks import ModelCheckpoint

import os

import os.path

from sklearn.metrics import roc_auc_score

import matplotlib.pyplot as plt

wmatplotlib inline

Using TensorFlow backend.

Set hyperparameters

training:
epochs = 2 # seem to keep overfitting after 2 epochs
batch_size = 128

vector-space embedding:
n_dim = 64

n_unique_words = 100800
max_review_length = 1000
pad_type = trunc_type = 'pre'
drop_embed = 8.2

LSTM layer architecture:
n_lstm 1 = 64 # lower
n_Llstm_2 = 64 # new!
drop_Llstm = 0.2

Tokenize plot data, split train/test, and pad sequences to max length

tokenized_df = df.copy()

t = Tokenizer(num words=n_unique_words)
t.fit_on_texts(tokenized_df['plot'])

tokenized_df['plot'] = t.texts_to_sequences(tokenized_df['plot'])
print (tokenized_df.head())

msk = np.random.rand(len{(df)) < 8.8
train_x = tokenized _df [msk] ['plot'].values
train_y = tokenized_df [msk] ['rating'].values

test_x = tokenized_df[~msk] ['plot'].values
test_y = tokenized_df[~msk] [*'rating'].values

train_x = pad_sequences(train_x, maxlen=max_review_length, padding=pad_type, truncating=trunc_type, value=0)
test_x = pad_sequences(test_x, maxlen=max_review_length, padding=pad_type, truncating=trunc_type, value=0)

title rating \

0 Toy Story 3.921240
1 Jumanji 3.211977
2 Grumpier 0ld Men 3.151040
3 Waiting to Exhale 2.861393
4 Father of the Bride Part II 3.064592

plot
@ [7, 4, 212, 45, 3357, 30, 324, 496, 23, 3914, ...
1 [7, 514, 52, 49, 802, 4354, 4, 1780, 3, 1030, ...
2 [1, 5342, 209, 370, 706, 3, 127, 139, 25, 3, 1l...
3 [138, 3@, 1, 211, 23, 438, 436, 36, 229, 438, ...
4 [1, 100, 116, 691, 129, 29, 1, 742, 5, 1, 91, ...

Design LSTM neural network architecture

model = Sequential()

model.add(Embedding(n_unique_words, n_dim, input_length=max_review_ length))
model.add(SpatialDropoutlD(drop_embed))

model.add(Bidirectional(LSTM(n_1lstm 1, dropout=drop lstm, return_sequences=True))) # retain temporal dimension
model.add(Bidirectional(LSTM(n_1lstm_2, dropout=drop_1lstm)))

model.add(Dense(1, activation='linear"'))

model. summary ()

Layer (type) Output Shape Param #
enbedding_1 (Embedding) (None, 1000, 64) 640000
spatial_dropoutld_ 1 (Spatial (None, 1000, 64) 4]
bidirectional 1 (Bidirection (None, 10600, 128) 66048
bidirectional_2 (Bidirection (None, 128) 08816
dense_1 (Dense) (None, 1) 129

Total params: 804,993
Trainable params: 864,993
Non-trainable params: @

this is the part where
we wait a really long

time for model
training...

Let's see how

scores!

plot from: https://noisey.vice.com/en_us/article/65z4zb/wtf-is—-star—-wars

plot = """

Eventually Princess Lela gets rescued but Obi Wan dies and becomes a blue ghost.

So Luke Skywalker’s like, “Oh hell no, I'm gonna go fight this a-hole, to whom I

bear no familial relation that I know of... yet.” But Yoda’s like, “A training sequence,
there must be.” So Luke gets trained in the ways of the Jedi Knights. At the end of

the training, Yoda says, "May the force be with you and I hope annoying people don't post
this on Facebook every May for all eternity." He goes to the Death Star where the

Jedis are fighting the Storm Troopers (this is what’s known as “a star war”). Boba Fett
is there riding around on a jet pack, shooting everyone in the star war.

Luke finds Darth and breaks out his light saber. Luke hears Yoda in his head: “Use

The Force.” There's a big light saber fight between the blue light saber and the red

one. Vader gets a good shot in and chops Luke's hand off and drops the bomb on him that
he’s his father all Maury Povich-like. And Luke is like, “Nooooocoo!” Han Solo comes along
and saves them and blows up the Death Star and then gets frozen in carbonite.

my_plot = t.texts_to_sequences([plot])

my_plot = pad_sequences(my_plot, maxlen=max_review_length, padding=pad_type, truncating=trunc_type, value=0)
print(my_plot[a])

model.predict(my_plot)

How does it stack up?

It probably didn't deserve this
rating...

81: array([[3.136698]], dtype=float32)

In my amateur model, most reviewed movie plots ended up
scoring around the median/mean score, which makes
sense, since that's the safest bet for a reward function

when you don't really have a clue.

Overall, | learned a lot about developing neural networks

for things like this, but | don't think plot summaries alone

are a good indicator of how well people are going to like a
movie!

Thanks!

