Neuron

Network

Intermediat

Net

Data for Dee

rour Project

How Deep Learning Works Deep Learning — Unit 2

Dr. Jon Krohn
jon@untapt.com

October 14th, 2017

Neuron Theory

Theory

Data for Deep

- 1 Essential Theory I: Neural Units
- 2 Essential Theory II: Cost Functions, Gradient Descent & Backpropagation
- 3 An Intermediate Neural Network
- 4 Data Sets for Deep Learning
- 5 Your Deep Learning Project I: Ideating

Theory

Data for Deep Learning

- 1 Essential Theory I: Neural Units
- 2 Essential Theory II: Cost Functions, Gradient Descent & Backpropagation
- 3 An Intermediate Neural Network
- 4 Data Sets for Deep Learning
- 5 Your Deep Learning Project I: Ideating

Ineory

Data for Deep Learning

- 1 Essential Theory I: Neural Units
- 2 Essential Theory II: Cost Functions, Gradient Descent & Backpropagation
- 3 An Intermediate Neural Network
- 4 Data Sets for Deep Learning
- 5 Your Deep Learning Project I: Ideating

Neuron Theory

Theory

Data for Deep Learning

- 1 Essential Theory I: Neural Units
- 2 Essential Theory II: Cost Functions, Gradient Descent & Backpropagation
- 3 An Intermediate Neural Network
- 4 Data Sets for Deep Learning
- Your Deep Learning Project I: Ideating

Neuron Theory

Intermediat

Data for Deep Learning

- 1 Essential Theory I: Neural Units
- 2 Essential Theory II: Cost Functions, Gradient Descent & Backpropagation
- 3 An Intermediate Neural Network
- 4 Data Sets for Deep Learning
- 5 Your Deep Learning Project I: Ideating

Neuron Theory

Theory

Data for Dee

Learning

- 1 Essential Theory I: Neural Units
- 2 Essential Theory II: Cost Functions, Gradient Descent & Backpropagation
- 3 An Intermediate Neural Network
- 4 Data Sets for Deep Learning
- 5 Your Deep Learning Project I: Ideating

Network Theory

Intermediat

Data for De

Your Project

[whiteboard equations + Arsenal]

Unit 2

Neuron Theory

Network

Intermediat

-

Your Project

[playground]

Network Theory

Intermediat Net

Data for Deep Learning

- 1 Essential Theory I: Neural Units
- 2 Essential Theory II: Cost Functions, Gradient Descent & Backpropagation
- 3 An Intermediate Neural Network
- 4 Data Sets for Deep Learning
- 5 Your Deep Learning Project I: Ideating

Unit 2

Theory

Network Theory

Intermediat

Data for De Learning

our Proiect

[whiteboard equations + Arsenal]

Unit 2

Theory

Network Theory

Intermediat

Data for De

Your Project

[playground]

Your Projec

Take-Home Exercise I Artificial Neural Network Language

- solve another TF Playground problem, e.g., a regression
- verbalize weights, biases & network architecture
- verbalize Arsenal items

Your Projec

Take-Home Exercise I Artificial Neural Network Language

- solve another TF Playground problem, e.g., a regression
- verbalize weights, biases & network architecture
- verbalize Arsenal items

Take-Home Exercise I Artificial Neural Network Language

- solve another TF Playground problem, e.g., a regression
- verbalize weights, biases & network architecture
- verbalize Arsenal items

Neuron Theory

Theory Intermediate

Net
Data for Deep

Your Project

Essential Theory I: Neural Units

Essential Theory II: Cost Functions, Gradient Descent & Backpropagation

3 An Intermediate Neural Network

4 Data Sets for Deep Learning

5 Your Deep Learning Project I: Ideating

Unit 2

Neuron

Network

Net

Intermediate

Data for De

Your Project

[how might you...?]

Neuron Theory

Theory

Data for Deep Learning

- Essential Theory I: Neural Units
- 2 Essential Theory II: Cost Functions, Gradient Descent & Backpropagation
- 3 An Intermediate Neural Network
- 4 Data Sets for Deep Learning
- 5 Your Deep Learning Project I: Ideating

Network Theory

Intermedia Net

Data for Deep Learning

Bluchell	No.	
Crocus		
Trechily		
Tulip		W Wy
Cowslip		1

Dataset	Classes	Train Samples
AG's News	4	120,000
Sogou News	5	450,000
DBPedia	14	560,000
Yelp Review Polarity	2	560,000
Yelp Review Full	5	650,000
Yahoo! Answers	10	1,400,000
Amazon Review Full	5	3,000,000
Amazon Review Polarity	2	3,600,000

Network Theory

Intermedia Net

Data for Deep Learning

Bluchell	No.	
Crocus		
Trechily		
Tulip		W Wy
Cowslip		1

Dataset	Classes	Train Samples
AG's News	4	120,000
Sogou News	5	450,000
DBPedia	14	560,000
Yelp Review Polarity	2	560,000
Yelp Review Full	5	650,000
Yahoo! Answers	10	1,400,000
Amazon Review Full	5	3,000,000
Amazon Review Polarity	2	3,600,000

Network Theory

Intermedia Net

Data for Deep Learning

Bluchell	No.	
Crocus		
Trechily		
Tulip		W Wy
Cowslip		1

Dataset	Classes	Train Samples
AG's News	4	120,000
Sogou News	5	450,000
DBPedia	14	560,000
Yelp Review Polarity	2	560,000
Yelp Review Full	5	650,000
Yahoo! Answers	10	1,400,000
Amazon Review Full	5	3,000,000
Amazon Review Polarity	2	3,600,000

Network Theory

Intermediat

Data for Deep Learning

Your Project

Open Data Sources

Jon Krohn, Cajoler of Datums

Home Resources

Posts Publications Talks

> Academia Applications

Quotations Contact To train a powerful model, the larger the data set, the better — if it's well-organised and open, that's ideal. The following repositories are standouts that meet all these criteria:

- Data.gov (home of >150k US government-related datasets),
- Govcode, a collection of government open source projects,
 the Open Data Stack Exchange, and
- the Open Data Stack Exchange, and
- this curated list of 'awesome' public datasets
- this well-annotated list of data sets for natural language processing
 for biomedical and health data specifically, check out:
 - this University of Minnesota resource
 - o this Medical Data for Machine Learning GitHub repo
- For machine learning models that require a lot of labelled data, check out:

•

- UC Irvine's repository
- Yahoo's massive 13TB data set comprised of 100 billion user interactions with news items
- Google's image and video data sets
- Luke de Oliveira's Greatest Public Datasets for Al blog post
- CrowdFlower's Data for Everyone

Finally, here are extensive pages on importing data from the Web into R, provided by CRAN and MRAN.

[Data Is Plural]

Neuron Theory

Intermediat

Data for Deep Learning

- Essential Theory I: Neural Units
- 2 Essential Theory II: Cost Functions, Gradient Descent & Backpropagation
- 3 An Intermediate Neural Network
- 4 Data Sets for Deep Learning
- 5 Your Deep Learning Project I: Ideating

Veuron

Network

ntermediate

Data for Deep Learning

Intermediate

Data for Dee

Your Project

perspectives to approach from

- 1 data set -> problem to solve
- 2 problem to solve -> data set
- default projects
 - image classification with non-MNIST images, e.g., fashion MNIST, scraped image categories
 - sentiment analysis with Zhang, Zhao & LeCun (2015) yelp dataset

Intermediate

Data for De

Learning

- perspectives to approach from
 - 1 data set -> problem to solve
 - 2 problem to solve -> data set
- default projects
 - image classification with non-MNIST images, e.g., fashion MNIST, scraped image categories
 - e sentiment analysis with Zhang, Zhao & LeCun (2015) yelp dataset

Intermediate

Data for Dee Learning

- perspectives to approach from
 - 1 data set -> problem to solve
 - problem to solve -> data set
- default projects
 - image classification with non-MNIST images, e.g., fashion MNIST, scraped image categories
 - sentiment analysis with Zhang, Zhao & LeCun (2015) yelp dataset

Net for Doc

Learning

- perspectives to approach from
 - 1 data set -> problem to solve
 - 2 problem to solve -> data set
- default projects
 - 1 image classification with non-MNIST images, e.g., fashion MNIST, scraped image categories
 - 2 sentiment analysis with Zhang, Zhao & LeCun (2015) yelp dataset

Data for Deep

- perspectives to approach from
 - 1 data set -> problem to solve
 - 2 problem to solve -> data set
- default projects
 - 1 image classification with non-MNIST images, e.g., fashion MNIST, scraped image categories
 - 2 sentiment analysis with Zhang, Zhao & LeCun (2015) yelp dataset

- perspectives to approach from
 - 1 data set -> problem to solve
 - problem to solve -> data set
- default projects
 - 1 image classification with non-MNIST images, e.g., fashion MNIST, scraped image categories
 - 2 sentiment analysis with Zhang, Zhao & LeCun (2015) yelp dataset

