Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

Theory

Neural Units
Neural Nets
Deep Neural Ne

Applicatio

ConvNets LSTMs untapt Reinforcement Building Blocks

The Future

Deep Learning with Artificial Neural Networks

Jon Krohn
jon@untapt.com

Chief Data Scientist at untapt

Metis — January 17th, 2017 (slides available at jonkrohn.com/talks)

Antecedents
Tech Velocity
Vision Case Study
Machine Intelligence

Theory
Neural Units
Neural Nets
Deep Neural Ne

Application
ConvNets
LSTMs
untapt
Reinforcement
Building Blocks

The Future

Antecedents

The Velocity of Technological Progress Case Study: A History of Biological & Artificial Vision Machine Intelligence

2 Theory
Biological & Artificial Neurons
Neural Networks
Deep Neural Networks

3 Contemporary Applications
Convolutional Neural Networks
Long Short-Term Memory Recurrent Neural Networks
Deep Learning at untapt
Deep Reinforcement Learning
Building Blocks

Antecedents
Tech Velocity
Vision Case Study
Machine Intelligence

Theory Neural Units Neural Nets Deep Neural Ne

ConvNets
LSTMs
untapt
Reinforcement
Building Blocks

The Futur

1 Antecedents

The Velocity of Technological Progress Case Study: A History of Biological & Artificial Vision Machine Intelligence

2 Theory

Biological & Artificial Neurons Neural Networks Deep Neural Networks

3 Contemporary Applications
Convolutional Neural Networks
Long Short-Term Memory Recurrent Neural Networks
Deep Learning at untapt
Deep Reinforcement Learning
Building Blocks

Antecedents
Tech Velocity
Vision Case Study
Machine Intelligence

Theory Neural Units Neural Nets Deep Neural Ne

ConvNets
LSTMs
untapt
Reinforcement
Building Blocks

The Futur

Antecedents

The Velocity of Technological Progress Case Study: A History of Biological & Artificial Vision Machine Intelligence

2 Theory

Biological & Artificial Neurons Neural Networks Deep Neural Networks

3 Contemporary Applications

Convolutional Neural Networks
Long Short-Term Memory Recurrent Neural Networks
Deep Learning at untapt
Deep Reinforcement Learning
Building Blocks

Antecedents

The Velocity of Technological Progress Case Study: A History of Biological & Artificial Vision Machine Intelligence

2 Theory

Biological & Artificial Neurons Neural Networks Deep Neural Networks

3 Contemporary Applications

Convolutional Neural Networks Long Short-Term Memory Recurrent Neural Networks Deep Learning at untapt Deep Reinforcement Learning **Building Blocks**

Tech Velocity

Antecedents

The Velocity of Technological Progress

Case Study: A History of Biological & Artificial Vision

Biological & Artificial Neurons Neural Networks

Convolutional Neural Networks Long Short-Term Memory Recurrent Neural Networks

Jeanne Calment

Antecedents

Tech Velocity
Vision Case Study

Theory

Neural Units
Neural Nets
Deep Neural Ne

Applicatio

LSTMs untapt Reinforcement

Dullding Dioce

Antecedents

Tech Velocity
Vision Case Study

Γheory

Neural Units Neural Nets Deep Neural N

Applicatio ConvNets

untapt Reinforcemen

The Future

Jeanne Calment

(1875-1997 — i.e., 122 years)

Life in the Year 2138

Antecedent

Tech Velocity
Vision Case Study

Theory

Neural Units
Neural Nets
Deep Neural N

Applica

ConvNets LSTMs untapt Reinforcement Building Blocks

Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

Theory

Neural Units Neural Nets Deep Neural Nets

Applicati

ConvNets LSTMs untapt Reinforcement Building Blocks

Antecedents

Tech Velocity
Vision Case Study

heory

Neural Units
Neural Nets
Deep Neural N

Application ConvNets

ConvNets LSTMs untapt

Building Bloc

Antecedents
Tech Velocity
Vision Case Study
Machine Intelligence

Theory
Neural Units
Neural Nets

Application
ConvNets
LSTMs
untapt
Reinforcement
Building Blocks

1 Antecedents

The Velocity of Technological Progress

Case Study: A History of Biological & Artificial Vision Machine Intelligence

2 Theory

Biological & Artificial Neurons Neural Networks Deep Neural Networks

3 Contemporary Applications

Convolutional Neural Networks
Long Short-Term Memory Recurrent Neural Networks
Deep Learning at untapt
Deep Reinforcement Learning
Building Blocks

Antecedents

Tech Velocity
Vision Case Study

Theory

Neural Units
Neural Nets
Deep Neural I

Applicati

ConvNets LSTMs untapt Reinforcemen

Building Block

Antecedents
Tech Velocity
Vision Case Study

Theory

Neural Units
Neural Nets
Deep Neural Ne

Applicatio ConvNets

untapt Reinforcemer

Building Block

Antecedents

Tech Velocity
Vision Case Study

Theory

Neural Units
Neural Nets
Deep Neural N

Applicatio

LSTMs

Reinforcemen

The Futur

Hubel & Wiesel (1959)

Vision Case Study

Hubel & Wiesel, 1968

Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

heory

Neural Units
Neural Nets
Deep Neural N

Application

LSTMs untapt

Reinforcement

Vision Case Study

Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

Theory

Neural Units
Neural Nets

Application

ConvNets
LSTMs
untapt
Reinforcement
Building Blocks

The Futur

Camera Obscura da Vinci (15th Century)

Antecedent

Tech Velocity
Vision Case Study

Thoory

Neural Units
Neural Nets
Deep Neural N

Applicat

ConvNets LSTMs untapt Reinforcement Building Blocks

The Future

Block World Larry Roberts (1965)

-23-4445(a-d)

(a) Original picture.

(b) Differentiated picture.

(c) Line drawing.

(d) Rotated view.

Antecedent

Anteceden

Vision Case Study

heorv

Neural Units Neural Nets

eep Neural I

Applicat

ConvNets

LSTMS

Reinforcemen

The Future

Viola & Jones (2001)

Antecedents

Tech Velocity
Vision Case Study

Theor

Neural Units Neural Nets Deep Neural I

Applicatio

ConvNets LSTMs

Reinforcemen

The Future

Neurocognitron

Fukushima (1980)

Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

heory

Neural Units Neural Nets Deep Neural N

Application

untapt Reinforcemen

Reinforcemer Building Block

The Future

MNIST & LeNet-5

LeCun et al. (1998)

PROC. OF THE IEEE, NOVEMBER 1998

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Antecedents

Tech Velocity
Vision Case Study

Theory

Neural Units
Neural Nets

Applicatio

LSTMs

Reinforceme

Building Bloc

The Future

LeCun, Boutou, Bengio & Haffner (1998)

ImageNet

Antecedents
Tech Velocity
Vision Case Study

Thoory

Neural Units
Neural Nets
Deep Neural N

Applicatio

untapt Reinforcemer

The Future

gill fungus ffordshire bullterrier

currant

dead-man's-fingers

beach wagon

fire engine

indri

howler monkey

Antecedents

Vision Case Study
Machine Intelligence

Neural Units
Neural Nets
Deep Neural N

Application
ConvNets
LSTMs

Reinforcemen
Building Block

The Future

ImageNet Classification Error

Krizhevsky, Sutskever & Hinton (2012)

Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

heory

Neural Units Neural Nets Deep Neural N

Applicatio ConvNets

LSTMs

Reinforcement

The Future

Krizhevsky et al. (2012)

Machine Intelligence

Antecedents

The Velocity of Technological Progress Case Study: A History of Biological & Artificial Vision Machine Intelligence

Biological & Artificial Neurons Neural Networks Deep Neural Networks

Convolutional Neural Networks Long Short-Term Memory Recurrent Neural Networks

Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

Theory

Neural Units
Neural Nets
Deep Neural N

Applica

LSTMs
untapt
Reinforcemer
Building Blod

Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

Theory

Neural Units
Neural Nets
Deep Neural N

Applica

LSTMs
untapt
Reinforcemer
Building Blod

Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

Theory

Neural Units
Neural Nets
Deep Neural N

Applica

LSTMs
untapt
Reinforcemer
Building Blod

Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

heory

Neural Units
Neural Nets
Deep Neural N

Applicati

LSTMs untapt Reinforcement Building Block

The Future

Deep Learning in Late 2016

[Image to Lyrics and Music]

[Daddy's Car]

[Sunspring]

Anteced

Tech Velocity
Vision Case Study
Machine Intelligence

Theory

Neural Units Neural Nets Deep Neural

Applicati

ConvNets LSTMs untapt Reinforcement Building Blocks

Neural Units

The Velocity of Technological Progress Case Study: A History of Biological & Artificial Vision

2 Theory

Biological & Artificial Neurons

Neural Networks Deep Neural Networks

Convolutional Neural Networks Long Short-Term Memory Recurrent Neural Networks

Antecedents

Tech Velocity
Vision Case Study

Theor[®]

Neural Units

leural Nets

Applicati

ConvNets

LSTWS

Beinforceme

Building Block

The Future

Biological Neuron Morphology

Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

Theory

Neural Units

oon Moural

Application

ConvNets

untant

Reinforceme

The Future

Perceptron Rosenblatt (1957)

output =
$$\begin{cases} 0 & \text{if } \sum_{j} w_{j} x_{j} \leq \text{ threshold} \\ 1 & \text{if } \sum_{j} w_{j} x_{j} > \text{ threshold} \end{cases}$$

Antocodonte

Tech Velocity
Vision Case Study

Theory

Neural Units

leural Nets

Application

ConvNets

LSTMs

Reinforcemen

The Future

Biological Neuron Physiology

The Binary Action Potential

Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

Γheory

Neural Units

- - - NI----I NI

Applicati

ConvNets

LSTMs

Doinforcomo

Building Block

The Future

Perceptron Rosenblatt (1957)

Antecedents

Tech Velocity
Vision Case Study

Theory

Neural Units

eural Nets

Applicati

Complete

LSTMs

Reinforceme

Building Bloc

The Future

Multi-Layer Perceptron

Antecedents

Vision Case Study
Machine Intelligence

i neory

Neural Units

laan Maura

Application

ConuNista

LSTMs

untapt

Dellaine Die

The Eutone

Multi-Layer Perceptron

Antecedents

Tech Velocity
Vision Case Study

Theory

Neural Units

loon Noural N

Applicati

ConvNets

LSTMs

Reinforceme

Building Block

The Future

Sigmoid Neuron

$$\frac{1}{1 + \exp(-\sum_{j} w_{j} x_{j} - b)}$$

Antecedent

Tech Velocity
Vision Case Study

Theory

Neural Units Neural Nets

Deep Neural N

Application ConvNets

LSTMs untapt

Reinforcemen

The Future

tanh Neuron

$$\sigma(z) = \frac{1 + \tanh(z/2)}{2}$$

Antecedents

Tech Velocity Vision Case Study

Theory

Neural Units Neural Nets

eurai Nets eep Neural

Application ConvNets

LSTMs

untapt

Building Bloc

The Future

ReLU: Rectified Linear Units

Nair & Hinton (2010); Maas, Hannun & Ng (2014)

Outline

Neural Nets

The Velocity of Technological Progress Case Study: A History of Biological & Artificial Vision

2 Theory

Biological & Artificial Neurons

Neural Networks

Deep Neural Networks

Convolutional Neural Networks Long Short-Term Memory Recurrent Neural Networks

Neural Nets

MNIST Handwritten Digits

г ප a

Antecedents

Tech Velocity Vision Case Study

Theory

Neural Nets

Applicatio

ConvNets LSTMs

untapt

Building Bloo

The Futur

Fully-Connected Neural Net Single Hidden Layer

Neural Nets

Popular Libraries

Never pay for software

- Theano
- Torch
- Caffe
- TensorFlow [demo]

- TFLearn
- Keras

Antecedents

Tech Velocity Vision Case Study Machine Intelligen

l heory

Neural Nets
Deep Neural Ne

Application

ConvNets

LSTMs

Reinforcement
Building Block

The Futur

Popular Libraries

Never pay for software

- Theano
- Torch
- Caffe
- TensorFlow [demo]

- TFLearn
- Keras

Antecedents

Tech Velocity
Vision Case Study
Machine Intelliger

l heory

Neural Nets
Deep Neural Ne

Application ConvNets LSTMs

untapt
Reinforcement
Building Blocks

The Futur

Popular Libraries

Never pay for software

- Theano
- Torch
- Caffe
- TensorFlow [demo]

- TFLearn
- Keras

Antecedents

Tech Velocity
Vision Case Study

Theory

Neural Nets
Deep Neural Ne

Application ConvNets LSTMs

untapt
Reinforcement
Building Blocks

The Futur

Popular Libraries

Never pay for software

- Theano
- Torch
- Caffe
- TensorFlow [demo]

- TFLearn
- Keras

Antecedents

Tech Velocity
Vision Case Study

Theory

Neural Nets
Deep Neural Ne

Application ConvNets LSTMs

untapt
Reinforcement
Building Blocks

The Future

Popular Libraries

Never pay for software

- Theano
- Torch
- Caffe
- TensorFlow [demo]

- TFLearn
- Keras

Antecedents

Tech Velocity
Vision Case Study

Theor

Neural Onits
Neural Nets
Deep Neural Ne

Application ConvNets LSTMs

untapt
Reinforcement
Building Blocks

The Futur

Popular Libraries

Never pay for software

- Theano
- Torch
- Caffe
- TensorFlow [demo]

- TFLearn
- Keras

Outline

Antecedents
Tech Velocity
Vision Case Study
Machine Intelligence

Theory
Neural Units
Neural Nets
Deep Neural Nets

Application
ConvNets
LSTMs
untapt
Reinforcement
Building Blocks

The Futur

1 Antecedents

The Velocity of Technological Progress
Case Study: A History of Biological & Artificial Vision
Machine Intelligence

2 Theory

Biological & Artificial Neurons Neural Networks

Deep Neural Networks

3 Contemporary Applications

Convolutional Neural Networks
Long Short-Term Memory Recurrent Neural Networks
Deep Learning at untapt
Deep Reinforcement Learning
Building Blocks

4 The Future

Antecedents
Tech Velocity
Vision Case Study

I heory
Neural Units
Neural Nets

Deep Neural Nets

ConvNets
LSTMs
untapt
Reinforcement

untapt Reinforcement Building Block

The Future

Deep Fully-Connected Net

3 (or more) Hidden Layers

Antecedent

Tech Velocity
Vision Case Study

heorv

Neural Units

Deep Neural Nets

Applica

ConvNets LSTMs

untapt

Building Bloo

The Future

Synaptic Pruning

Antecedents

Tech Velocity
Vision Case Study

heory

Neural Units

Deep Neural Nets

Application

Application

LSTMs

untapt

Building Bloc

The Future

(Stochastic) Gradient Descent

Adam = AdaGrad + RMSprop

Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

heory

Neural Units
Neural Nets
Deep Neural Nets

Applicatio

ConvNets

untapt

Reinforceme

The Future

Backpropagation

computes error & gradient of cost function

$$\delta^L = \nabla_a C \odot \sigma'(z^L) \tag{BP1}$$

$$\delta^{l} = ((w^{l+1})^{T} \delta^{l+1}) \odot \sigma'(z^{l})$$
 (BP2)

$$\frac{\partial C}{\partial b_j^l} = \delta_j^l \tag{BP3}$$

$$\frac{\partial C}{\partial w_{jk}^{l}} = a_k^{l-1} \delta_j^{l} \tag{BP4}$$

Antecedents

Vision Case Study

Machine Intelligence

Theory

Neural Units
Neural Nets
Deep Neural Nets

Application ConvNets

LSTMs untapt

Building Block

The Future

Overfitting ...and avoiding it

- L1/L2 regularization
- dropout
- artificial data set expansion

Deep Neural Nets

Overfitting ...and avoiding it

- L1/L2 regularization
- dropout
- artificial data set expansion

Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

Theor

Neural Units Neural Nets Deep Neural Nets

Applicatio ConvNets LSTMs

untapt Reinforcemen

Building Bloc

Overfitting ...and avoiding it

- L1/L2 regularization
- dropout
- artificial data set expansion

Antecedents

Vision Case Study
Machine Intelligence

Theory

Neural Unit

Deep Neural Nets

Applicati ConvNets

untapt Reinforcemen

The Future

Improving Neural Networks

Attribute & Hyperparameter Tuning

problem simplification

- number and width of layers
- cost fxn: quadratic, cross-entropy, log-likelihood, &c.
- more epochs, early stopping
- clever initialization of weights and biases
- learning rate η , variable schedule
- regularization parameter λ
- mini-batch size
- automation, e.g., with Spearmin

Antecedents

Vision Case Study

Machine Intelligence

Theor

Neural Note

Deep Neural Nets

Application

untapt Reinforcement

The Francis

Improving Neural Networks

- problem simplification
- · number and width of layers
- cost fxn: quadratic, cross-entropy, log-likelihood, &c.
- more epochs, early stopping
- clever initialization of weights and biases
- learning rate η , variable schedule
- regularization parameter λ
- mini-batch size
- automation, e.g., with Spearmin

Antecedents
Tech Velocity
Vision Case Study

Theory

Neural Nets

Deep Neural Nets

Doop House 14

Application ConvNets LSTMs

untapt
Reinforcement

The Future

Improving Neural Networks

- problem simplification
- number and width of layers
- cost fxn: quadratic, cross-entropy, log-likelihood, &c.
- more epochs, early stopping
- clever initialization of weights and biases
- learning rate η , variable schedule
- regularization parameter λ
- mini-batch size
- automation, e.g., with Spearming

Antecedents
Tech Velocity
Vision Case Study
Machine Intelligence

Neural Units

Deep Neural Nets

Application
ConvNets
LSTMs

untapt
Reinforcement
Building Blocks

The Future

Improving Neural Networks

- problem simplification
- number and width of layers
- cost fxn: quadratic, cross-entropy, log-likelihood, &c.
- more epochs, early stopping
- clever initialization of weights and biases
- learning rate η , variable schedule
- regularization parameter λ
- mini-batch size
- automation, e.g., with Spearmint

Antecedents
Tech Velocity
Vision Case Study
Machine Intelligence

Neural Units

Deep Neural Nets

Application
ConvNets
LSTMs

untapt Reinforcement Building Blocks

The Future

Improving Neural Networks

- problem simplification
- number and width of layers
- cost fxn: quadratic, cross-entropy, log-likelihood, &c.
- more epochs, early stopping
- clever initialization of weights and biases
- learning rate η , variable schedule
- regularization parameter λ
- mini-batch size
- automation, e.g., with Spearmint

Antecedents
Tech Velocity
Vision Case Study
Machine Intelligence

Neural Units

Deep Neural Nets

ConvNets LSTMs untapt Reinforcement

The Futur

Improving Neural Networks

- problem simplification
- number and width of layers
- cost fxn: quadratic, cross-entropy, log-likelihood, &c.
- more epochs, early stopping
- clever initialization of weights and biases
- learning rate η , variable schedule
- regularization parameter λ
- mini-batch size
- automation, e.g., with Spearmint

Antecedents
Tech Velocity
Vision Case Study
Machine Intelligence

Neural Units

Neural Nets Deep Neural Nets

Application
ConvNets
LSTMs

untapt Reinforcement Building Blocks

The Futur

Improving Neural Networks

- problem simplification
- number and width of layers
- cost fxn: quadratic, cross-entropy, log-likelihood, &c.
- more epochs, early stopping
- clever initialization of weights and biases
- learning rate η , variable schedule
- regularization parameter λ
- mini-batch size
- automation, e.g., with Spearmin

Antecedents
Tech Velocity
Vision Case Study
Machine Intelligence

Neural Units

Deep Neural Nets

ConvNets LSTMs untapt Reinforcement

Building Blocks

Improving Neural Networks

- problem simplification
- number and width of layers
- cost fxn: quadratic, cross-entropy, log-likelihood, &c.
- more epochs, early stopping
- clever initialization of weights and biases
- learning rate η , variable schedule
- regularization parameter λ
- mini-batch size
- automation, e.g., with Spearming

Antecedents
Tech Velocity
Vision Case Study
Machine Intelligence

Neural Units
Neural Nets

Deep Neural Nets

ConvNets LSTMs untapt Reinforcement Building Blocks

The Futur

Improving Neural Networks

- · problem simplification
- number and width of layers
- cost fxn: quadratic, cross-entropy, log-likelihood, &c.
- more epochs, early stopping
- clever initialization of weights and biases
- learning rate η , variable schedule
- regularization parameter λ
- mini-batch size
- · automation, e.g., with Spearmint

Antecedents

Tech Velocity
Vision Case Study

heory

Neural Unit

Deep Neural Nets

Application

ConvNets

LSTMs

Rainfaraamy

Building Blog

The Future

Universality

Solve Any Continuous Function (Nielsen, 2015)

A ntopodonto

Tech Velocity
Vision Case Study

heory

Neural Units Neural Nets

Deep Neural Nets

Application

LSTMs

Reinforcemer

Unstable Gradient

Typically Vanishes (but can Explode)

$$\frac{\partial C}{\partial b_1} = \sigma'(z_1) \times w_2 \times \sigma'(z_2) \times w_3 \times \sigma'(z_3) \times w_4 \times \sigma'(z_4) \times \frac{\partial C}{\partial a_4}$$

Antecedents

Tech Velocity
Vision Case Study

Theory

Neural Nets
Deep Neural Nets

Deep Neurai Ne

Applicatio

ConvNets LSTMs

untapt Reinforcemen

Building Block

The Future

Antecedents

Tech Velocity
Vision Case Study

Theory

Neural Nets

Deep Neural Nets

Applicatio

ConvNets

untapt Reinforcemen

Reinforcemen Building Block

The Future

Outline

ConvNets

The Velocity of Technological Progress Case Study: A History of Biological & Artificial Vision

Biological & Artificial Neurons Neural Networks

3 Contemporary Applications

Convolutional Neural Networks

Long Short-Term Memory Recurrent Neural Networks

Antecedents

Tech Velocity Vision Case Study

Theory

Neural Units
Neural Nets

Applicati

ConvNets LSTMs

Reinforcemer

The Future

Hubel & Wiesel (1959)

Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

Theory

Neural Units
Neural Nets
Deep Neural N

Application

ConvNets

Reinforcemen

The Future

Antecedents

Tech Velocity
Vision Case Study

Theor

Neural Units Neural Nets Deep Neural Ne

Applicati

ConvNets

LSTMs

Reinforcement

The Future

Antecede

Tech Velocity
Vision Case Study
Machine Intelligence

Γheory

Neural Nets

Doop Neural Nets

Applicatio

ConvNets

LSTMS

Reinforceme

Building Bloc

The Future

DeConvNet Yosinski et al. (2015)

[Deep Visualization Toolbox]

Antecedente

Tech Velocity
Vision Case Study
Machine Intelligence

Theory

Neural Units
Neural Nets

Applicati

ConvNets

LSTMs

untapt

Building Block

The Future

"2.5-dimension" CT Scans Roth et al. (2015)

ConvNets

Computer-Aided Detection

Shin et al. (2016); Roth et al. (2016)

Experimental Results (~100% sensitivity but ~40 FPs/patient at candidate generation step; then 3-fold CV with data augmentation)

Mediastinum

Abdomen

83% @ 3 FPs (was 30%)

Antecedent:

Tech Velocity
Vision Case Study
Machine Intelligence

Theory

Neural Units
Neural Nets
Deep Neural Net

Applicat

ConvNets

LSTMs

Reinforceme

Ť

Yefeng Zheng Gustavo Carneiro Lin Yang Editors Deep Learning and Convolutional **Neural Networks** for Medical Image Computing

Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

Theory

Neural Units Neural Nets Deep Neural N

ConvNets

LSTMe

untont

Reinforcemer

The Future

DAILY NEWS 22 November 2016

Google's DeepMind agrees new deal to share NHS patient data

Phone alerts could save lives Jose Luis Pelsez Inc/Getty

By Victoria Turk

Google's DeepMind has announced a five-year agreement with a UK National Health Service (NHS) trust that will give it access to patient data to develop and deploy its healthcare app, Streams.

Outline

LSTMs

The Velocity of Technological Progress Case Study: A History of Biological & Artificial Vision

Biological & Artificial Neurons Neural Networks

3 Contemporary Applications

Convolutional Neural Networks

Long Short-Term Memory Recurrent Neural Networks **Building Blocks**

Antecedents

Tech Velocity
Vision Case Study

heory

Neural Units
Neural Nets

Applicatio ConvNets LSTMs

untapt Reinforcem

Building Block

The Future

Long Short-Term Memory

Hochreiter & Schmidhuber (1997)

Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

neory

Neural Units Neural Nets Deep Neural Net

Application ConvNets LSTMs

untapt
Reinforcement
Building Blocks

The Future

Word2Vec

Mikolov, Sutskever, Chen, Corrado & Dean (2013)

Male-Female

Verb tense

Country-Capital

Antecedents

Tech Velocity Vision Case Study

Thoory

Neural Units
Neural Nets
Deep Neural N

Application ConvNets

LSTMs untapt

Building Bloc

The Future

t-SNE

Antecedents

Tech Velocity
Vision Case Study

heory

Neural Units Neural Nets Deep Neural Ne

Application ConvNets LSTMs

untapt Reinforcemen

Building Block

The Future

Word2Vec + t-SNE

Antecedents

Tech Velocity
Vision Case Study

heory

Neural Units Neural Nets Deep Neural Ne

Application ConvNets LSTMs

Reinforcemen

The Future

Word2Vec + t-SNE

Word2Vec + t-SNE

```
Tech Velocity
Vision Case Study
```

Neural Units

Neural Nets

Applicatio

ConvNets

untapt

Reinforceme

The Francis

```
model.most_similar(positive=['angular'])

[('angularjs', 0.9534549117088318),
   ('backbonejs', 0.9315043687820435),
   ('ember', 0.905410647392273),
   ('emberjs', 0.9029799103736877),
   ('reactjs', 0.896049439907074),
   ('requirejs', 0.8759748339653015),
   ('coffeescript', 0.8645504713058472),
   ('bootstrap', 0.8554328083992004),
   ('nodejs', 0.8515532612800598),
   ('backbone', 0.8443130254745483)]
```

```
model.most_similar(positive=['managed'])

[('oversaw', 0.8659406900405884),
  ('directed', 0.8491166234016418),
  ('supervised', 0.8058902621269226),
  ('coordinated', 0.7858685851097107),
  ('led', 0.7539615035057068),
  ('orchestrated', 0.7211644649505615),
  ('supported', 0.7198437452316284),
  ('comanaged', 0.6774874925613403),
  ('encompassing', 0.6726169586181641),
  ('administered', 0.6706464886665344)]
```


Outline

untapt

The Velocity of Technological Progress Case Study: A History of Biological & Artificial Vision

Biological & Artificial Neurons Neural Networks

3 Contemporary Applications

Convolutional Neural Networks Long Short-Term Memory Recurrent Neural Networks Deep Learning at untapt

Antecedente

Tech Velocity Vision Case Study

Theory

Neural Units Neural Nets

Applicat

ConvNets LSTMs

untapt

Ruilding Block

The Futur

untapt Digital Recruitment Platform

untapt

Antecedents

Tech Velocity
Vision Case Study

Theory

Neural Units
Neural Nets
Deep Neural Ne

Application ConvNets

untapt Reinforcemen

The Future

untapt

untapt

Candidate-Side Feedback

Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

Neural Units Neural Nets

Application ConvNets

untapt

Reinforceme

The Future

untapt Client-Side Feedback

Antecedents

Tech Velocity
Vision Case Study

Theory

Neural Units
Neural Nets
Deep Neural N

Application ConvNets

untapt

Reinforce

Building Block

The Future

untapt Multi-Stage Bayesian Regression

Krohn, Rives-Corbett & Donner (2016)

Antecedents

Tech Velocity
Vision Case Study

Theory

Neural Units
Neural Nets
Deep Neural Ne

Application ConvNets

LSTMs

untapt Reinforcemen

Building Blocks

The Future

untapt

Antecedents

Tech Velocity
Vision Case Study

Theor

Neural Units Neural Nets Deep Neural Ne

Applicatio ConvNets LSTMs

untapt
Reinforcement

The Future

untapt Ensemble with Deep Neural Net

Give me one bullet-point from your resume:
>> • Sat around all day checking my Facebook feed
I predict a 0.0% chance of interview

Give me one bullet-point from your resume:
>> • Developed trading applications in Python
I predict a 24.6% chance of interview

Give me one bullet-point from your resume:
>> • Developed python solution for Monte Carlo risk calculation using numpy,
scipy and pandas, with a Javascript frontend in AngularJS and React
I predict a 98.1% chance of interview

deep-orange.untapt.com

Antecede

Tech Velocity
Vision Case Study
Machine Intelligence

heorv

Neural Units
Neural Nets
Deep Neural Net

Applicati

ConvNets LSTMs untapt Reinforceme

Ruilding Block

The Future

Outline

Reinforcement

The Velocity of Technological Progress Case Study: A History of Biological & Artificial Vision

Biological & Artificial Neurons Neural Networks

3 Contemporary Applications

Convolutional Neural Networks Long Short-Term Memory Recurrent Neural Networks

Deep Reinforcement Learning

Antecedents

Tech Velocity Vision Case Study

Theory

Neural Units
Neural Nets
Deep Neural Ne

Application ConvNets

Reinforcement

Building Bloc

The Future

AlphaGO Silver et al. (2016)

intecedents

Video Pinball 25395 Boxing Breakout Star Gunner Robotank Atlantis 449% Crazy Climber 419% Gopher Demon Attack 294% Name This Game Knull Assault 246% Road Runner Kangaroo James Bond 145% Tennis 143% Space Invaders 121% Beam Rider 119% Tutankham 112% Kung-Fu Master

Freeway 102%
Time Pilot 100%
Enduro 97%
Fishing Derby 93%
Up and Down 1ce Hockey 79%
Q*Bert 78%
H.E.R.O 76%

Asterix

Batte Zone 27: Warner of Wor 27: Chopper Command . Chopper Command

Private Eye | -2% | Montezuma's Revenge | 9% | 0% | 300% | 400% | 500% | 600% | 1000%

Tech Velocity
Vision Case Study

Theory

Neural Units
Neural Nets
Deep Neural Ne

Applicatio ConvNets

untapt Reinforcement

Building Block

The Futur

Deep Q-Learning

at human-level or above

DQN

45008

below human-level

Mnih et al. (2015)

intecedents

Video Pinball 25395 Boxing Breakout Star Gunner Robotank Atlantis 449% Crazy Climber 419% Gopher Demon Attack 294% Name This Game Knull Assault 246% Road Runner Kangaroo James Bond 145% Tennis 143% Space Invaders 121% Beam Rider 119% Tutankham 112% Kung-Fu Master

Freeway 102%
Time Pilot 100%
Enduro 97%
Fishing Derby 93%
Up and Down 1ce Hockey 79%
Q*Bert 78%
H.E.R.O 76%

Asterix

Batte Zone 27: Warner of Wor 27: Chopper Command . Chopper Command

Private Eye | -2% | Montezuma's Revenge | 9% | 0% | 300% | 400% | 500% | 600% | 1000%

Tech Velocity
Vision Case Study

Theory

Neural Units
Neural Nets
Deep Neural Ne

Applicatio ConvNets

untapt Reinforcement

Building Block

The Futur

Deep Q-Learning

at human-level or above

DQN

45008

below human-level

Mnih et al. (2015)

ntecedents

Tech Velocity
Vision Case Study

Theory Neural Units

Neural Units Neural Nets Deep Neural Ne

Application
ConvNets

untapt Reinforcement

Building Block

The Futur

Deep Q-Learning

Mnih et al. (2015)

[Atari Games]

Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

Γheory

Neural Units
Neural Nets
Deep Neural Nets

Complete

LSTMs

Reinforcement

The Future

[OpenAl Universe]

[Google DeepMind Lab]

Outline

Antecedents
Tech Velocity
Vision Case Study
Machine Intelligence

Theory
Neural Units
Neural Nets

Application ConvNets LSTMs untapt Reinforcement

Building Blocks

Antecedents

The Velocity of Technological Progress
Case Study: A History of Biological & Artificial Vision
Machine Intelligence

2 Theory

Biological & Artificial Neurons Neural Networks Deep Neural Networks

3 Contemporary Applications

Convolutional Neural Networks
Long Short-Term Memory Recurrent Neural Networks
Deep Learning at untapt
Deep Reinforcement Learning
Building Blocks

4 The Future

Hardware

Antecedents

Tech Velocity Vision Case Study Machine Intelligend

neory

Neural Units
Neural Nets
Deep Neural Ne

Applicati

ConvNets LSTMs untapt

Reinforceme

Building Blocks

he Futur

local machine

- build your own cluster
- AWS
- GPU(s) / TPU(s)

.

Tech Velocity Vision Case Study Machine Intelligence

i neory

Neural Units Neural Nets Deep Neural Ne

Applicati

untapt Reinforcemen

Building Blocks

The Future

Hardware

- local machine
- build your own cluster
- AWS
- GPU(s) / TPU(s)

Tech Velocity Vision Case Study Machine Intelligence

rneory

Neural Units Neural Nets Deep Neural Ne

Applicatio

ConvNets LSTMs untapt

Reinforceme

Building Blocks

The Future

Hardware

- local machine
- build your own cluster
- AWS
- GPU(s) / TPU(s)

Hardware

Antecedent

Tech Velocity Vision Case Study Machine Intelligenc

rieory

Neural Units
Neural Nets
Deep Neural Ne

ConvNets

untapt Reinforceme

Building Blocks

- local machine
- build your own cluster
- AWS
- GPU(s) / TPU(s)

Building Blocks

Resources for Human Learning

Deep Learning

Jon Krohn, Cajoler of Datums

Home Posts

Talks

Resources

Publications

Applications

Academia Photography

Quotations

First Steps. For people in New York, I founded a Deep Learning Study Group. If you're further afield, you can track our progress via GitHub. Otherwise, get a lay of the land from:

- · the sequence of courses suggested by Greg Brockman, or
- · this (more comprehensive) introductory resource post from Ofir Press

Textbooks. Relative to viewing lectures, I prefer reading and working through problems. The stand-out resources for this, in the order they ought to be tackled are:

- · Michael Nielsen's e-book Neural Networks and Deep Learning
- . the in-press Deep Learning textbook by Goodfellow, Bengio and Courville

Interactive Demos. Top-drawer interactive demos you can develop an intuitive sense of neural networks from are provided by:

- Chris Olah
- the illustrious Andrei Karpathy

Applications. Scroll down to see my recommendations for high-quality data sources as well as global issues in need of solutions. Problems worth solving with deep learning approaches in particular are curated by OpenAI.

Academic Papers. If you're looking for the latest deep learning research, bookmark:

- Flood Sung's roadmap for deep learning papers
- · Adit Deshpande's list of nine key papers
- · this thorough, subcategorized reading list · Karpathy's arXiv Sanity Preserver
- · GitXiv for open-source implementations of popular arXiv papers

Antecedents

Tech Velocity
Vision Case Study

Theory

Neural Units
Neural Nets
Deep Neural Ne

ConvNets

ConvNets LSTMs

Reinforcem

Building Blocks

The Follows

Transfer Learning

Anteceden

Tech Velocity
Vision Case Study

Theory

Neural Units
Neural Nets
Deep Neural N

Applicatio

LSTMs
untapt
Reinforcement
Building Blocks

The Future

Jeanne Calment

Antecedente

Tech Velocity Vision Case Study

Theory

Neural Units
Neural Nets
Deep Neural Ne

Application ConvNets

untapt Reinforcemen

The Future

Jeanne Calment (1875-1997 — i.e., 122 years)

21 121

1896 1996

.

Tech Velocity
Vision Case Study
Machine Intelligence

heory

Neural Units
Neural Nets

Applica

ConvNets LSTMs untapt Reinforcement Building Blocks

The Future

Life in the Year 2138

Antecedents

Tech Velocity
Vision Case Study

Theor

Neural Units Neural Nets Deep Neural Ne

Applicatio

untapt Reinforcement

Reinforcement Building Block

The Future

Thiel & Masters (2014)

Antecedents

Tech Velocity
Vision Case Study

Theor

Neural Units Neural Nets Deep Neural Ne

Applicatio

untapt Reinforcement

Reinforcement Building Block

The Future

Thiel & Masters (2014)

Antecedents

Tech Velocity
Vision Case Study

Theor

Neural Units Neural Nets Deep Neural Ne

Applicatio

untapt Reinforcement

Reinforcement Building Block

The Future

Thiel & Masters (2014)

Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

Theor

Neural Units Neural Nets Deep Neural Ne

Application ConvNets

untapt Reinforcement

Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

Theory

Neural Units Neural Nets Deep Neural Nets

Application

LSTMs

Reinforcement

The Future

Still lots to go around

Nuclear-warhead stockpile, '000

"Strategic Arms Limitation Treaty Strategic Arms Reduction Treaty Strategic Offensive Reductions Treaty Includes 5,500 retired warheads awaiting dismantling" "Excludes retired warheads" "Strategic Offensive Reduction Treaty Strategic Arms Reduction Treat

Source: Bulletin of the Atomic Scientists

Antecedents

Vision Case Study
Machine Intelligence

Neural Units
Neural Nets
Deep Neural Ne

Applicatio

untapt

Reinforcemen Building Block

The Future

Pinker & Mack (2014)

Sources: Physical and sexual abose, National Child Abose and Neglect Data System, analyzed by David Finkelion, 2014, in Thends in Child Wellier. Presentation at the Carear Institute Policy Series, March 31, 2014. Victimization at school, Brease of Author Series's Objective Child yield New York Child State States Survey Victimizer's Analysis Tool,

Antecedents

Vision Case Study
Machine Intelligence

Neural Units
Neural Nets
Deep Neural Ne

Applicatio

untapt

Reinforcemen Building Block

The Future

Pinker & Mack (2014)

Sources: Physical and sexual abose, National Child Abose and Neglect Data System, analyzed by David Finkelion, 2014, in Thends in Child Wellier. Presentation at the Carear Institute Policy Series, March 31, 2014. Victimization at school, Brease of Author Series's Objective Child yield New York Child State States Survey Victimizer's Analysis Tool,

Antecedents

Vision Case Study
Machine Intelligence

Neural Units
Neural Nets
Deep Neural Ne

Applicatio

untapt

Reinforcemen Building Block

The Future

Pinker & Mack (2014)

Sources: Physical and sexual abose, National Child Abose and Neglect Data System, analyzed by David Finkelion, 2014, in Thends in Child Wellier. Presentation at the Carear Institute Policy Series, March 31, 2014. Victimization at school, Brease of Author Series's Objective Child yield New York Child State States Survey Victimizer's Analysis Tool,

Antecedents

Tech Velocity
Vision Case Study
Machine Intelligence

Theor

Neural Units Neural Nets Deep Neural Ne

Applicatio

untapt Reinforcement

Building Blocks
The Future

World population living in extreme poverty, 1820 to 2015

Data source: World Poverty in absolute numbers (Max Roser based on World Bank and Bourguignon and Morrisson (2002))

Antecedents

Tech Velocity
Vision Case Study

Theor

Neural Units
Neural Nets
Deep Neural Net

Applicatio

untapt Reinforcement

Building Blocks
The Future

Literate and illiterate world population, 1800 to 2014

Data source: Literate World Population (Our World In Data based on OECD and UNESCO)

Antecedents

Tech Velocity
Vision Case Study

Theory

Neural Units
Neural Nets
Deep Neural Nets

Applicatio ConvNets

Reinforcemen

The Future

Number of world citizens living under different political regimes

OurWorld in Data

The Polity IV score captures the type of political regime for each country on a range from -10 (full autocracy) to +10 (full democracy). Regimes that fall into the middle of this spectrum are called anocracies.

Data source: World Population by Political Regime they live in (by Our World In Data)

Antecedents

Vision Case Study

Theory

Neural Units Neural Nets Deep Neural Net

Applicatio

untapt Reinforcement

The Future

Global child mortality, 1800 to 2015

Share of the world population dying and surviving the first 5 years of life.

Data source: Global child mortality (since 1800) based on Gapminder and World Bank

Antecedents

Vision Case Study

Machine Intelligence

heory

Neural Units
Neural Nets
Deep Neural N

Applicat

ConvNets LSTMs untapt Reinforcemen

Building Block

Antecedent

Tech Velocity Vision Case Study

Theor

Neural Units
Neural Nets
Deep Neural N

Applicat

ConvNets LSTMs untapt

Building Block

Antecedents

Vision Case Study
Machine Intelligence

Theory

Neural Units
Neural Nets
Deep Neural N

Applicat

ConvNets LSTMs untapt Reinforcement

The Future

Human-Level Intelligence Station It's coming FAST! waitbutwhy.com

Antecedents

Tech Velocity
Vision Case Study

Theory

Neural Units
Neural Nets
Deep Neural N

Application

ConvNets LSTMs untapt Reinforcement Building Blocks

Anteceden

Tech Velocity
Vision Case Study

Theory

Neural Units
Neural Nets
Deep Neural Ne

Applica

ConvNets LSTMs untant

Reinforceme

Antecedents

Vision Case Study
Machine Intelligence

Theory

Neural Units
Neural Nets

Applicat

ConvNets LSTMs

untapt

Building Block

Antecedents

Tech Velocity
Vision Case Study

heory

Neural Units
Neural Nets
Deep Neural Ne

Applicati

ConvNets LSTMs

untapt

Reinforcemen

The Future

Human Progress

Antecedents

Tech Velocity
Vision Case Study

Γheorv

Neural Units
Neural Nets
Deep Neural N

Applicati

ConvNets LSTMs

untapt

Reinforcemer

