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Jeanne Calment
(1875-1997 — i.e., 122 years)

Tech Velocity

21 121
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Life in the Year 2138

Tech Velocity
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Tech Velocity

Worldwide digital data created and replicated
Zettabytes™
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Biodiversity during the Phanerozoic

Vision Case Study

All Genera
Well-Resolved Genera-
Long-Term Trend —

The "Big 5" Mass Extinctions \/
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Hubel & Wiesel (1959)

Vision Case Study

Electrical signal
from brain

Recording electrode ——»

Visual area

/ of brain
Eﬂ\
0

Stimulus




Deep
Learning

Vision Case Study
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Hubel & Wiesel, 1968




Deep
Learning

Vision Case Study

topographical mapping
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Visual Cortices

Parietal Lobe

Vision Case Study LGN
Occipital Lobe

V7 ]
V3a (Motion)
V3 (Form)

V2 (Relays signals)

Temporal V1 (Catalogs Input)

Lobe S = VP (Relays signals)

V8

Sagittal Section

Extrastriate Cortex

Striate Cortex

Extrastriate Cortex
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Camera Obscura
da Vinci (15th Century)
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Block World

Larry Roberts (1965)

Vision Case Study
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Viola & Jones (2001)
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Neurocognitron
Fukushima (1980)
Input Layer 1 Layer 2 Layer 3
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LeCun et al. (1998)
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LeCun, Boutou, Bengio &
Haffner (1998)
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ImageNet

Vision Case Study

motor scooter leopard
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ImageNet Classification Error
Krizhevsky, Sutskever & Hinton (2012)

Vision Case Study
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Krizhevsky et al. (2012)

Vision Case Study
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Deep Learning in Late 2016

Machine Intelligence

[Image to Lyrics and Music]

[Daddy’s Car]

[Sunspring]



https://www.theguardian.com/technology/2016/nov/29/its-no-christmas-no-1-but-ai-generated-song-brings-festive-cheer-to-researchers
https://www.youtube.com/watch?v=LSHZ_b05W7o
http://arstechnica.com/the-multiverse/2016/06/an-ai-wrote-this-movie-and-its-strangely-moving/
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Machine Intelligence
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Biological Neuron Morphology

Neural Units

Dendrites

Terminal Bulb
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Perceptron
Rosenblatt (1957)
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Biological Neuron Physiology
The Binary Action Potential

Membrane
potential

Time




Deep
Learning

Neural Units

0.8 -

0.6 -
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Perceptron
Rosenblatt (1957)

0.0
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Multi-Layer Perceptron

input layer
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Multi-Layer Perceptron

w4+ Aw

output+Aoutput
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Neural Units
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Sigmoid Neuron
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tanh Neuron
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RelLU: Rectified Linear Units

Nair & Hinton (2010); Maas, Hannun & Ng (2014)
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Neural Nets

® Theory

Neural Networks

Outline



MNIST

Handwritten Digits
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Fully-Connected Neural Net
Single Hidden Layer

hidden layer

Neural Nets

input layer
(T84 neurons)
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Higher-Level APIs:



http://playground.tensorflow.org/

Deep
Learning

e Theano
e Torch

Higher-Level APIs:

Popular Libraries

Never pay for software


http://playground.tensorflow.org/

Deep
Learning

Popular Libraries

Never pay for software

e Theano
e Torch
e Caffe

Higher-Level APIs:



http://playground.tensorflow.org/

Deep
Learning

Popular Libraries

Never pay for software

Theano

Torch

Caffe

TensorFlow [demo]

Higher-Level APls:



http://playground.tensorflow.org/

Deep
Learning

Popular Libraries

Never pay for software

Theano

Torch

Caffe

TensorFlow [demo]

Higher-Level APls:
e TFLearn



http://playground.tensorflow.org/

Deep
Learning

Theano

Torch

Caffe

TensorFlow [demo]

Higher-Level APls:
e TFLearn
e Keras

Popular Libraries

Never pay for software


http://playground.tensorflow.org/
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Deep Neural Nets

® Theory

Deep Neural Networks
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Deep Fully-Connected Net

3 (or more) Hidden Layers

hidden layer 1 hidden layer 2 hidden layer 3

input layer

Deep Neural Nets
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Synaptic Pruning

Deep Neural Nets
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(Stochastic) Gradient Descent
Adam = AdaGrad + RMSprop
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Backpropagation

computes error & gradient of cost function

neuron j, layer [
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e L1/L2 regularization
e dropout
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Deep Neural Nets

Overfitting

...and avoiding it

A 4

e L1/L2 regularization
e dropout
e artificial data set expansion

Y

Y
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Deep Neural Nets
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D e number and width of layers
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problem simplification

Deep Neural Nets

number and width of layers
cost fxn: quadratic, cross-entropy, log-likelihood, &c.
more epochs, early stopping




Deep
Learning

Improving Neural Networks
Attribute & Hyperparameter Tuning

problem simplification

number and width of layers

cost fxn: quadratic, cross-entropy, log-likelihood, &c.
more epochs, early stopping

clever initialization of weights and biases

Deep Neural Nets
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Improving Neural Networks
Attribute & Hyperparameter Tuning

e problem simplification
SR e number and width of layers

e cost fxn: quadratic, cross-entropy, log-likelihood, &c.
e more epochs, early stopping

e clever initialization of weights and biases

e |earning rate n, variable schedule

e regularization parameter A

e mini-batch size

e automation, e.g., with Spearmint
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Universality

Solve Any Continuous Function (Nielsen, 2015)

3 Weighted output from hidden layer
0.0
= h=-11 :
0.2
Deep Neural Nets NS 1
‘0.2 | ]
= h=-14 F '
04 14
\
h=-03
0.4
z NS \
TN / Average deviation: 0,38
\ 0.6 Success!
- |_Reset
"0.6
AN /
= h=-1.1
0.8
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Unstable Gradient

Typically Vanishes (but can Explode)

Speed of learning: 4 hidden layers

— Hidden layer 1

Hidden layer 2
10* —— Hidden layer 3
Hidden layer 4

Deep Neural Nets

10° 100 200 300 400 500
Number of epochs of training
ac w ' w ’ w ’ ac
55, — O (z1) X W2 X' (22) X W3 X 0 (23) X Wa X0 (22) X 55,

Ty

O /’,?\ wa f,z\\ s /,?\ o e
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Revolution of Depth

152 layers
A
Deep Neural Nets "\
‘\
\\
22 layers | 19 Iayers
‘6.7 I

357 I I 8 layers I Slavers shallow

ILSVRC'15 ILSVRC'14  [LSVRC'14 ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)
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Deep Neural Nets
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Inception=-v4

Inception-v3 ° ResNet-152
ResNet-50 o VGG-16

ResNet-101
° ResNet-34

VGG-19

Operations [G-Ops]

ResNet-18

°° GoogleNet

ENet

© BN-NIN
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ConvNets

@® Contemporary Applications
Convolutional Neural Networks
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Hubel & Wiesel (1959)

Electrical signal
from brain

Recording electrode ——»

Visual area

/ of brain
Eﬂ\
0

Stimulus
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ConvNets

topographical mapping

hyﬁer—complex @ high level
cells
; @ mid level

@ low level

camplex cells

simple cells
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THubel & Wiesel, 1968



Deep
Learning

F . I -
9 5 . 3 L ]. : l
i | E=LE
3
. i oY
- :
ConvNets

Max T
paaling e Max
" paaling

128 Max 1]
pooling #949

/ e S




Deep
Learning

DeConvNet

Yosinski et al. (2015)

[Deep Visualization Toolbox]



https://www.youtube.com/watch?v=AgkfIQ4IGaM

Deep
Learning

“2.5-dimension” CT Scans
Roth et al. (2015)
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Computer-Aided Detection
Shin et al. (2016); Roth et al. (2016)

Experimental Results (-100% sensitivity but -40 FPs/patient at
candidate generation step; then 3-fold CV with data augmentation)

TIN5 =01 TR TN =07T

TIN5 =08 FaRs 5000 FaRe TN p=007 TR 5=00

ConvNets

= Mediastinum = Abdomen
71% @ 3 FPs (was 55%) 83% @ 3 FPs (was 30%)

Distance (<=15) - Lymph Node FROC Curve for 15 Patients Distance (<=15) - Lymph Node FROC Curve for 14 Patients
i 1

g

~Cometwilh N =2 (AUC 0911)
- ConviNetwih N = 2 (AUC: 0892)
- ConvNetwith N = 5 (AUC. 0.924)
===~ ComNet with N = 10 (AUC: 0.930)
ComMetwih N = 15 (AUC: 0939)
A Cometwih N = 25 (AUC' 0938)
== == ComvNet wilh N = 50 (AUC: 0 928)
=== ComNet with N = 75 (AUC: 0.942)
ComvMetwith N = 100 (AUC 0.942)

= ConvNet with N = 2 (AUC 0.862)
= ConvNet with N = 3 (AUC: 0872)
~ConvNet with N = 5 {AUC: 0 890)
====ConvNet with N = 10 (AUC: 0.884)
ConvNet with N = 15 (AUC: 0 899)
Convietwith N = 25 (AUC0907)
====ConvNet with N = 50 (AUC 0.921)
» onvNet with N = 75 (AUC: 0917)
‘ConvNet with N = 100 (AUC: 0.916)

True Positive Rate (Sensitivity)
True Positive Rate (Sensitivity)

T4 5 6 7 T T a5 s 7
False Positive Rate per Patient False Positive Rate per Patient
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0G0

LeLu

Yefeng Zheng
Gustavo Carneiro
LinYang Editors

Deep Learning

and Convolutional
Neural Networks
for Medical Image
Computing




Deep
Learning

DAILY NEWS 22 November 2016

Google’'s DeepMind agrees new deal
to share NHS patient data

ConvNets

By Victoria Turk

Google's DeepMind has announced a five-year agreement with a UK National Health Service (NHS) trust that will
g » o

s "
. .
. .
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@® Contemporary Applications

Long Short-Term Memory Recurrent Neural Networks




Long Short-Term Memory

Hochreiter & Schmidhuber (1997)
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LSTMs

Male-Female

walked

walking

swimming

Verb tense

Word2Vec

Mikolov, Sutskever, Chen, Corrado & Dean (2013)

spain .__-~§§\\\\~—~§§‘
Italy ~—__—~_________~——s——‘Hadrid
Rome.

Germany ——

Berlin
Tkey ~—0
Ankara
Russia
Moscow
Canada ————————————— Ottawa

Japan ——
o Tokyo
Vietnam ———————_ Hanoi

China ————————— Beijing

Country-Capital
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t-SNE

Hinton & van der Maaten (2008)

LSTMs

e
40 20 o 20 40 60 . .
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vz

Word2Vec + t-SNE
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v2

Word2Vec + t-SNE
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Word2Vec + t-SNE

model.most_similar(positive=['angular'])

[('angularjs', 0.9534549117088318),
('backbonejs’, 0.9315043687820435),
('ember', 0.905410647392273),
('emberjs', 0.9029799103736877),
('reactis', 0.896049439907074),
('requirejs', 0.8759748339653015),
('coffeescript', 0.8645504713058472),
('bootstrap', 0.8554328083992004),
('nodejs', 0.8515532612800598),
('backbone', 0.8443130254745483)]

LSTMs

model.most similar(positive=[ 'managed’])

[('oversaw', 0.8659406900405884),
('directed’, 0.8491166234016418),
('supervised', 0.8058902621269226),
('coordinated’, 0.785B6B5851097107),
("led', 0.7539615035057068),

( 'orchestrated’, 0.7211644649505615),
('supported', 0.7198437452316284),
('comanaged', 0.6774874925613403),
('encompassing’, 0.6726169586181641),
('administered’', 0.6706464BB6665344)]
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@® Contemporary Applications

Deep Learning at untapt
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untapt

Digital Recruitment Platform

untapt
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untapt
Candidate-Side Feedback
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probability of invitation to interview

N
number of words in experlence sechon of appl\cahon
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untapt
Client-Side Feedback

Your Candidates Care About Most © Where Your Applicants Live @

Your Candidates @ All untapt Candidates

= | [ 1 =

Work / Life Balance Lovel of Responsibility
Technology Compensation Type of Company.

Responsiveness @ Experience © Previous Roles © Roles Applied To © Interviewing Elsewhere ©

141 57%

Response Time, in Days
Average Count
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untapt

Multi-Stage Bayesian Regression

LR ZISNNN NBZERN NRZRY

G625 24 23 22 21 20 s o 51 5 s s o 1o

untapt prior posterior ‘\
mean mean
wide
variance

narrow
variance

Krohn, Rives-Corbett & Donner (2016)
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08

untapt

After

06

untapt

Area Under Curve of ROC for Individual Jobs

n_apps
® 100
® 200
@ 300

06 08
Before Fitting Job-Specific Bayesian Model

Krohn, Rives-Corbett & Donner (2016)
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untapt

Ensemble with Deep Neural Net

Give me one bullet-point from your resume:
>> « Sat around all day checking my Facebook feed
I predict a 0.0% chance of interview

untapt

Give me one bullet-point from your resume:

>> « Developed trading applications in Python
I predict a 24.6% chance of interview

Give me one bullet-point from your resume:

>> « Developed python solution for Monte Carlo risk calculation using numpy,
scipy and pandas, with a Javascript frontend in Angular]S and React

I predict a 98.1% chance of interview

deep-orange.untapt.com .
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ye olde Hosmer-Lemeshow test
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untapt

proportion of applications connected
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Reinforcement

@® Contemporary Applications

Deep Reinforcement Learning
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Google DeepMind
Challenge Match

8-15March 2016

Reinforcement

)¢ Google DeepMind
¢ Challenge Match
-t ach 2018

AlphaGO

Silver et al. (2016)

£6% AlphaGo
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Deep Q-Learning

Mnih et al. (2015)

Videa Pinbal]

[
Crazy Cimber]
Gopher

Demon Attack |
Name This Game |
]

Reinforcement
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Up end Dour ]
e Hockey

et | I—
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https://www.youtube.com/watch?v=6kO4eZWeKOM
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Deep Q-Learning

Mnih et al. (2015)
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Name This Game |
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Reinforcement
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Videa Pinbal]

At
Crazy Cimber]
Gopher

Demon Attack |
Name This Game |
]

Reinforcement

Fishing Dty
Up end Dour ]
e Hockey

Private Eye |
Montezuma's Revenge.

g

H
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Deep Q-Learning

et | I—
HE RO Teiit at human-evel or above.
Asteric | B39 — oelow human-evel
Battle Zone | 6736l —
Wizard of Wor | GT5e——
Chopper Command_ | GSll—
Centipede | EEHRNE——
Bank Heist | 57800+
River Raic | G780
Zacon | S+
Amicar | 65—
Alien| 2~
Venture | @
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Double Durk

2

))
(
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[Atari Games]


https://www.youtube.com/watch?v=6kO4eZWeKOM
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[OpenAl Universe]

[Google DeepMind Lab]



https://openai.com/blog/universe/
https://deepmind.com/blog/open-sourcing-deepmind-lab/
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Resources for Human Learning

&

Data Science Resources —

C  ® www.jonkrohn.corm

Krohn, Cajoler of Di

Home
Posts
Resources
Publications
Talks
Applications

Deep Learning

First Steps. For people in New York, | founded a Deep Learning Study Group. If you're further afield, you can
track our progress via GitHub. Otherwise, get a lay of the land from:

« the sequence of courses suggested by Greg Brockman, or
« this (more comprehensive) introductory resource post from Ofir Press

Textbooks. Relative to viewing lectures, | prefer reading and working through problems. The stand-out resources
for this, In the order they ought to be tackled are:

» Michael Nielsen's e-book Neural Networks and Deep Learning
« the In-press Deep Leaming textbook by Goodfellow, Bengio and Courville

Interactive Demos. Top-drawer interactive demos you can develop an intuitive sense of neural networks from are
provided by:

« Chris Olah
« the illustrious Andrej Karpathy

Applications. Scroll down 1o see my recommendations for high-quality data sources as well as global issues in
need of solutions. Problems worth solving with deep leaming approaches in particular are curated by OpenAl

Academic Papers. If you're looking for the latest deep learning research, bookmark:

Flood Sung's roadmap for deep leaming papers
Adit Deshpande’s list of nine key papers

this thorough, subcategorized reading ist

Karpathy's arXiv Santty Preserver

« GitXiv for open-source implementations of popular arXiv papers
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Transfer Learning

X | © TensorFlow For Poets x Jon

< C &

@ Introduction

3 ) Retrieving the ima

training Inceptior

Using the Retrained

Model

Other Hyperparameters

ep: Training on

Sategories

Did you find a mistake? Please file a bug.

googl 1sorflow-for-p 0 ¥

< TensorFlow For Poets ( 37 min remaining

1. Introduction

TensorFlow is a an open source library for numerical computation, specializing in
machine learning applications. In this codelab, you will learn how to install and run
TensorFlow on a single machine, and wil train a simple classifier to classify images of
flowers.

What are we going to be building?

In this lab, we will be using transfer learning, which means we are starting with a model
that has been already trained on another problem. We will then be retraining it on a similar
problem. Deep learning from scratch can take days, but transfer leaming can be done in
short order.

We are going to use the Inception v3 network. Inception v3 is a trained for the ImageNet
Large Visual Recognition Challenge using the data from 2012, and it can differentiate
between 1,000 different classes, like Dalmatian or dishwasher. We will use this same
network, but retrain it to tell apart a small number of classes based on our own ex:

What you willlearn
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Jeanne Calment
(1875-1997 — i.e., 122 years)
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(@ Anomaly (°C) relative to 1901-2000

Jan-Dec Global Mean Temperature over Land & Ocean
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I Still lots to go around
Nuclear-warhead stockpile, ‘000

RUSSIA'S FIRST  CUBAN MISSILE FALLOF NEW
ATOMIC TEST CRISIS SALT* I SALT*IT  BERLINWALL START!I SORT* START!
h ; ) ' P f ;
i i i i P i i 50
i | | | Russia . | |
! : : : " : L
i | United States | i i i i
| | | p | | | 30
i i i i
i | i | ! i i
i i i i i i 20
1 1 1 1 1 1 1
1 1 1 1 I 1 ]
The Future ! ! i ! ! i ! iy 10
1 1 1 1 1 1 | e
! I ; L 1 I 0
TTTT T T T T rrrT T LI I L L L L
1949 60 70 80 a0 2000 12

*Strategic Arms Limitation Treaty Strategic Arms Reduction Treaty
iStrategic Offensive Reductions Treaty SIncludes 5,500 retired warheads awaiting dismantling
Source: Bulletin of the Atomic Scientists **Excludes retired warheads
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Pinker & Mack (2014

PREVALENCE OF MASS KILLINGS

Asessing Riks of Site-Sponsored MassKillog: (.

RATE OF BATTLE DEATHS IN ARMED CONFLICTS.
1946.2013

| 3

[TS——

HOMICIDE RATES IN THE US AND ENGLAND.
1967-2013, AND THE WORLD, 20032012

VICTIMIZATION OF CHILDREN IN THE US.

o Do ®




Deep
Learning

Pinker & Mack (2014

SRR DR Biliics HOMICIDE RATES IN THE US AND ENGLAND.
1967-2013, AND THE WORLD, 20032012

= —
-
i
3 5 § .
H H Sias. W
% i ~
* 10 3.
s
L s e s ™ £ ™ £ = o
has 50 55 w0 16s B0 WS 80 S 990 19 2000 2005 200
s ks o e oot g o e T e
The Future
RATE OF BATTLE DEATHS IN ARMED CONFLICTS VICTIMIZATION OF CHILDREN IN THE Us
19462013
H
H
H o
&




Deep
Learning

Pinker & Mack (2014

SRR DR Biliics HOMICIDE RATES IN THE US AND ENGLAND.
1967-2013, AND THE WORLD, 20032012

= —
-
i
3 5 § .
H H Sias. W
% i ~
* 10 3.
s
L s e s ™ £ ™ £ = o
has 50 55 w0 16s B0 WS 80 S 990 19 2000 2005 200
s ks o e oot g o e T e
The Future
RATE OF BATTLE DEATHS IN ARMED CONFLICTS VICTIMIZATION OF CHILDREN IN THE Us
19462013
H
H
H o
&




Deep
Learning

World population living in extreme poverty, 1820 to 2015 R

in Data
Share of people living in extreme poverty | Share of people not in extreme poverty
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Data source: World Poverty in absolute numbers (Max Roser based on World Bank and Bourguignon and Morrisson (2002))
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Literate and illiterate world population, 1800 to 2014

OAbsolute  @Relative
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Data source: Literate World Population (Our World In Data based on OECD and UNESCO)
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Number of world citizens living under different political regimes

The Polity IV score captures the type of political regime for each country on a range from -10 (full autocracy) to +10 (full
democracy). Regimes that fall into the middle of this spectrum are called anocracies.

Population in Democracy Population in Closed Anocracy | Population in Autocracy
Population in Colony
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Data source: World Population by Political Regime they live in (by Our World In Data)
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Global child mortality, 1800 to 2015

Share of the world population dying and surviving the first 5 years of life.

World - Share dying in first 5 years | World - Share surviving first 5 years of life
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Data source: Global child mortality (since 1800) based on Gapminder and World Bank
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Exponential Growth of Computing
Twentieth through twenty first century
Logarithmic Plot
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