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Unit9 —
GANs

Applications

GANs

Goodfellow et al. (2014)
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DCGANSs

Applications RadfOI’d et al. (201 6)

a) Generated by LSGANs.
l!' -

(b) Generated by DCGANSs (Reported in [13]).

Figure 5: Generated images on LSUN-bedroom.
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DCGANSs

Applications Radford et al. (201 6)
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CycleGANs

Applications Zhu et al. (201 7)

Monet  Photos Zebras T Horses Summer £ Winter

horse —» zebra

Monet Van Gogh Ukiyo-e

Photograph

https://junyanz.github.io/CycleGAN
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PIX2pix

Applications Isola et al. (201 7)
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StackGAN

Applications Zhang etal. (201 7)
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Figure 3. Example results by our proposed StackGAN, GAWWN [20], and GAN-INT-CLS [22] conditioned on text descriptions from
CUB test set. GAWWN and GAN-INT-CLS generate 16 images for each text description, respectively. We select the best one for each of
them to compare with our StackGAN.
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[Which Face is Real?]
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http://www.whichfaceisreal.com

(N

Applications

n - dimensional space

[“celebrity” latent-space interpolation]

[Mona Lisa frown] —


https://www.youtube.com/watch?v=XOxxPcy5Gr4&feature=youtu.be&t=1m49s
https://techcrunch.com/2019/05/22/mona-lisa-frown-machine-learning-brings-old-paintings-and-photos-to-life

Applications

Latent-Space Interpolation

Face Aging
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https://ganvatar.com/

Use Cases

Applications

- [ make $ selling art :) ]
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https://www.complex.com/life/2018/10/ai-generated-portrait-sells-for-400k
https://distill.pub/2017/aia/

Use Cases

Applications

« [ make $ selling art ) ]
* increase the resolution of an image
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Use Cases

Applications

« [ make $ selling art ) ]
* increase the resolution of an image
* simulate data, e.g., for training autonomous vehicles
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Use Cases

Applications

« [ make $ selling art ) ]
* increase the resolution of an image

simulate data, e.g., for training autonomous vehicles
predict next frames of video

NYCDATA SCIENCE
ACADEMY


https://www.complex.com/life/2018/10/ai-generated-portrait-sells-for-400k
https://distill.pub/2017/aia/

Use Cases

Applications

« [ make $ selling art ) ]
* increase the resolution of an image

simulate data, e.g., for training autonomous vehicles
predict next frames of video

speed fashion/architectural design (sketches to
photorealism)
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Use Cases

Applications

« [ make $ selling art ) ]
* increase the resolution of an image

simulate data, e.g., for training autonomous vehicles
predict next frames of video

speed fashion/architectural design (sketches to
photorealism)

+ edit images with realistic, nuanced changes
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Use Cases

Applications

« [ make $ selling art ) ]
* increase the resolution of an image

simulate data, e.g., for training autonomous vehicles
predict next frames of video

speed fashion/architectural design (sketches to
photorealism)

+ edit images with realistic, nuanced changes

[ artificial intelligence augmentation (AlA) ]
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Use Cases

Applications

« [ make $ selling art ) ]

* increase the resolution of an image

* simulate data, e.g., for training autonomous vehicles
+ predict next frames of video

+ speed fashion/architectural design (sketches to
photorealism)

+ edit images with realistic, nuanced changes
+ [ artificial intelligence augmentation (AIA) ]
+ also can generate time series like text, prices, audio
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Discriminator

Latent Space
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DISCRIMINATOR

REAL
? — |Discriminatorf 5  OR.

FAKE?
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TRAINING THE DISCRIMINATOR

. fake X |
- | Generator | o |. > 7
image
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TRAINING THE GENERATOR
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1-D Gaussian
Approximating a Toy Distribution

[ video ]
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https://www.youtube.com/watch?v=mObnwR-u8pc
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In Practice

[Quick, Draw!]
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https://quickdraw.withgoogle.com/

GANimation

(Requires Adobe Acrobat Reader)

In Practice

E
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28 conv with
64 5x5 filters, 2x2 stride

: 1
In Practice
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32 latent space coordinates

1 dense layer with 7 x 7 x 64 = 3136 neurons
1

3136

In Practice

l reshape

\

64

l upsampling + convTranspose
with 32 5x5 filters

~J!

14 32 upsampling + convTranspose
with 16 5x5 filters

_
-
(_‘

16
28 L convTranspose
with 5x5 filters
28 8

conv with 1 5x5 filters
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GAN Code

In Practice

[ notebook ]
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