L for NL

NLP Application

Word Vectors

Vector-Space Embedding word2vec Creating Word

Modeling NL

Preprocessing ROC Curve Sentiment

RNNs Simple RNN

Functiona

Seq2sec

Financial Forecasting

Natural Language Processing Deep Learning — Units 5 & 6

Dr. Jon Krohn
jon@untapt.com

Slides available at jonkrohn.com/talks

November 16th, 2019

Review

L for N

tro _P Application

Word Vector
Vector-Space
Embedding

Modeling N

Preprocessing ROC Curve Sentiment Classification

RNNS Simple RNN LSTMs

Functiona API

Seq2seq

Financial Forecasting Review Take-Home Exercise

2 The Power and Elegance of Deep Learning for NLP

3 Word Vectors

4 Modeling Natural Language Data

6 Recurrent Neural Networks

6 Non-Sequential Model Architecture

7 Sequence-to-Sequence Models

8 Financial Forecasting

Units 5 and 6 - NI P

Outline

Review Take-Home Exercise

2 The Power and Elegance of Deep Learning for NLP

Units 5 and 6 — NLP

Outline

neview

1 Review Take-Home Exercise

NLP Application

2 The Power and Elegance of Deep Learning for NLP

Word Vecto Vector-Space Embedding word2vec

3 Word Vectors

Modeling N Data

4 Modeling Natural Language Data

ROC Curve Sentiment Classification

6 Recurrent Neural Networks

Function API 6 Non-Sequential Model Architectures

Seq2se

Sequence-to-Sequence Models

Financial Forecastir

8 Financial Forecasting

Review

L for N

NLP Application

Word Vector Vector-Space Embedding

Vector-Space Embedding word2vec Creating Word Vectors

Modeling N

Preprocessing ROC Curve Sentiment Classification

RNNs Simple RNN

Functiona API

eq2sed

Financial Forecasting Review Take-Home Exercise

2 The Power and Elegance of Deep Learning for NLP

3 Word Vectors

4 Modeling Natural Language Data

6 Recurrent Neural Networks

6 Non-Sequential Model Architectures

7 Sequence-to-Sequence Models

8 Financial Forecasting

Review Take-Home Exercise

2 The Power and Elegance of Deep Learning for NLP

3 Word Vectors

Modeling Natural Language Data

Recurrent Neural Networks

- **Review Take-Home Exercise**
- 2 The Power and Elegance of Deep Learning for NLP
 - 3 Word Vectors
 - Modeling Natural Language Data
 - Recurrent Neural Networks
- 6 Non-Sequential Model Architectures

Review

L for NL

NLP Application
Representations

Word Vector Vector-Space Embedding word2vec Creating Word

Modeling N

Preprocessing ROC Curve Sentiment Classification

RNNs Simple RNI

Functiona

Seq2sec

Financial Forecasting Review Take-Home Exercise

2 The Power and Elegance of Deep Learning for NLP

3 Word Vectors

4 Modeling Natural Language Data

5 Recurrent Neural Networks

6 Non-Sequential Model Architectures

7 Sequence-to-Sequence Models

— NLP

Units 5 and 6

Outline

DL for N

1 Review Take-Home Exercise

NLP Application

2 The Power and Elegance of Deep Learning for NLP

Word Vector
Vector-Space
Embedding

3 Word Vectors

Modeling I

4 Modeling Natural Language Data

ROC Curve
Sentiment
Classification

RNNs Simple RNN LSTMs

ional 6 Non-Sequential Model Architectures

Functions API

7 Sequence-to-Sequence Models

Recurrent Neural Networks

Seq2se Financi

8 Financial Forecasting

— NLP

Units 5 and 6

Outline

DL for NLP

for NLP
Application

Applications

Vector-Space Embedding word2vec

Modeling N

Oata
Preprocessing
ROC Curve
Sentiment
Classification

RNNs Simple RNN LSTMs

Functional API

Seq2seq Financial

Financial Forecasting Review Take-Home Exercise

Word Vectors

4 Modeling Natural Language Data

6 Recurrent Neural Networks

6 Non-Sequential Model Architectures

7 Sequence-to-Sequence Models

8 Financial Forecasting

Units 5 and 6 - NI P

Review

Take-Home Exercise: VGGNet

L for NL

NLP Applications

Word Vectors
Vector-Space

Embedding word2vec Creating Word

Modeling NI

Preprocessing ROC Curve Sentiment

RNNs Simple RNN

Functional API

Seq2seq

Financial Forecasting

Take-Home Exercise: VGGNet

- ReLU
- cross-entropy
- epoch
- parameters
- hyperparams

- SGD
- learning rate
- batch size
- Adam
- dropout
- batchnorm

- input laver
 - dense/FC layer
- convolutional
- max-pooling
- flatten
- softmax layer

Take-Home Exercise: VGGNet

- ReLU

I for NI

NLP Application

Word Vectors

Vector-Space
Embedding

Embedding word2vec Creating Word Vectors

Modeling NI

Preprocessing ROC Curve Sentiment Classification

Simple RNNs

Functional API

Seq2seq

Financial Forecasting

Take-Home Exercise: VGGNet

- ReLU
 * SGD * input laye
- cross-entropy
- batch size
 convolutiona
- Adam
 max-pooling
- dronout flatten
 - batchnormsoftmax layer

I for NI

NLP Application

Word Vectors

Vector-Space
Embedding

word2vec Creating Word Vectors

Modeling NI Data

Preprocessing ROC Curve Sentiment Classification

Simple RNN:

Functional API

Seq2seq

Financial Forecasting

Take-Home Exercise: VGGNet

- ReLU
 * SGD * input laye
- cross-entropy
- epoch

 * batch size

 convolutions
- Adam
 max-pooling
- dropoutflatten
 - batchnormsoftmax layer

L for NL

NLP Application

Word Vectors
Vector-Space
Embedding
word2vec
Creating Word

Modeling N

Preprocessing ROC Curve Sentiment Classification

Simple RNN:

Functiona API

Seq2seq

Financial Forecastino

Take-Home Exercise: VGGNet

- cross-entropy
- epoch

 * batch size

 convolutions
- parameters

 * Adam
 * max-pooling
 - dropout flatten
 - batchnormsoftmax layer

L for NL

NLP Application

Word Vectors

Vector-Space
Embedding
word2vec
Creating Word

Modeling N

Preprocessing ROC Curve Sentiment Classification

Simple RNN:

Functiona API

Seq2sed

Financial Forecasting

Take-Home Exercise: VGGNet

Talk through the purpose of every line in the [VGGNet notebook], including all of the following terms:

- cross-entropy
- epoch
- parameters
- hyperparams

NYC DATA SCIENCE

L for NL

NLP Application

Word Vectors
Vector-Space
Embedding
word2vec
Creating Word

Modeling N

Preprocessing ROC Curve Sentiment Classification

Simple RNN

Functiona API

Seq2seq

Financial Forecasting

Take-Home Exercise: VGGNet

- ReLU
- cross-entropy
- epoch
- parameters
- hyperparams

- SGD
- loarning rate
- hatch size
- Adam
- dropout
- batchnorr

- input laver
- dense/FC layer
- convolutional
- max-pooling
- flatten
- softmax layer

L for NL

NLP Application

Word Vectors

Vector-Space
Embedding
word2vec
Creating Word

Modeling N

Preprocessing
ROC Curve
Sentiment

Simple RN

Functiona

Seq2seq

Financial Forecasting

Take-Home Exercise: VGGNet

- ReLU
- cross-entropy
- epoch
- parameters
- hyperparams

- SGD
- learning rate
- batch size
- Adam
- dropout
- batchnorn

- input layer
- dense/FC laye
- convolutional
- max-pooling
- flatten
- softmax layer

L for NL

NLP Application

Word Vectors
Vector-Space
Embedding
word2vec
Creating Word

Modeling N

Preprocessing ROC Curve Sentiment Classification

Simple RNN

Functiona API

Seq2seq

Financial Forecasting

Take-Home Exercise: VGGNet

- ReLU
- cross-entropy
- epoch
- parameters
- hyperparams

- SGD
- learning rate
- hatch size
- Adam
- dropout
- batchnorn

- input layer
- dense/FC laye
- convolutional
- max-pooling
- flatten
- softmax layer

L for NL

NLP Application

Word Vectors
Vector-Space
Embedding
word2vec
Creating Word

Modeling NI

Preprocessing ROC Curve Sentiment Classification

KININS
Simple RNNs
LSTMs

Functional API

Seq2seq

Financial Forecasting

Take-Home Exercise: VGGNet

- ReLU
- cross-entropy
- epoch
- parameters
- hyperparams

- SGD
- learning rate
- batch size
- Adam
- dropout
- batchnorr

- input layer
 - dense/FC layer
 - convolutional
 - max-pooling
- natten
- softmax layer

L for NL

NLP Application
Representations

Word Vectors
Vector-Space
Embedding
word2vec
Creating Word

Modeling NI

Preprocessing ROC Curve Sentiment Classification

Simple RNNs LSTMs

Functional API

Seq2seq

Financial Forecasting

Take-Home Exercise: VGGNet

- ReLU
- cross-entropy
- epoch
- parameters
- hyperparams

- SGD
- learning rate
- batch size
- Adam
- dropout
- batchnorn

- input layer
 - dense/FC layer
- convolutional
- max-pooling
- softmax laver
- oo iii ii ay o i

L for NL

NLP Application
Representations

Word Vectors
Vector-Space
Embedding
word2vec
Creating Word

Modeling NI

Preprocessing ROC Curve Sentiment Classification

Simple RNN: LSTMs

Functional API

Seq2seq

Financial Forecasting

Take-Home Exercise: VGGNet

Talk through the purpose of every line in the [VGGNet notebook], including all of the following terms:

- ReLU
- cross-entropy
- epoch
- parameters
- hyperparams

- SGD
- learning rate
- batch size
- Adam
- dropout
- batchnorn

- dense/FC lave
- dense/FC layer
- convolutional

• coftmax lavor

L for NL

NLP Application
Representations

Word Vectors
Vector-Space
Embedding
word2vec
Creating Word

Modeling N

Preprocessing ROC Curve Sentiment Classification

Simple RNN

Functional API

Seq2seq

Financial Forecasting

Take-Home Exercise: VGGNet

- ReLU
- cross-entropy
- epoch
- parameters
- hyperparams

- SGD
- learning rate
- batch size
- Adam
- dropout
- batchnorm

L for NL

NLP Application
Representations

Word Vectors
Vector-Space
Embedding
word2vec
Creating Word

Modeling NI

Preprocessing ROC Curve Sentiment Classification

Simple RNN: LSTMs

Functional API

Seq2seq

Financial Forecasting

Take-Home Exercise: VGGNet

- ReLU
- cross-entropy
- epoch
- parameters
- hyperparams

- SGD
- learning rate
- batch size
- Adam
 - dropout
- batchnorm

- input layer
- dense/FC layer
- convolutional
- max-pooling
- flatten
- softmax layer

L for NL

NLP Application
Representations

Word Vectors

Vector-Space
Embedding

word2vec

Creating Word

Modeling NI

Preprocessing ROC Curve Sentiment Classification

Simple RNNs

Functional API

Seq2seq

Financial Forecasting

Take-Home Exercise: VGGNet

- ReLU
- cross-entropy
- epoch
- parameters
- hyperparams

- SGD
- learning rate
- batch size
- Adam
 - dropout
- batchnorm

- input layer
- dense/FC layer
- convolutional
- max-pooling
- flatten
- softmax layer

L for NL

NLP Application
Representations

Word Vectors

Vector-Space
Embedding

word2vec

Creating Word

Modeling NI

Preprocessing ROC Curve Sentiment Classification

Simple RNNs LSTMs

Functional API

Seq2seq

Financial Forecasting

Take-Home Exercise: VGGNet

- ReLU
- cross-entropy
- epoch
- parameters
- hyperparams

- SGD
- learning rate
- batch size
- Adam
 - dropout
- batchnorm

- input layer
- dense/FC layer
- convolutional
- max-pooling
- flatten
- softmax layer

L for NL

NLP Application
Representations

Word Vectors

Vector-Space
Embedding

word2vec

Creating Word

Modeling NI Data

Preprocessing ROC Curve Sentiment Classification

Simple RNNs LSTMs

Functional API

Seq2seq

Financial Forecasting

Take-Home Exercise: VGGNet

- ReLU
- cross-entropy
- epoch
- parameters
- hyperparams

- SGD
- learning rate
- batch size
- Adam
 - dropout
- batchnorm

- input layer
- dense/FC layer
- convolutional
 - max-pooling
 - flatten
- softmax layer

L for NL

Intro
NLP Application
Representations

Word Vectors
Vector-Space
Embedding
word2vec
Creating Word
Vectors

Modeling N

Preprocessing ROC Curve Sentiment Classification

Simple RNNs LSTMs

Functional API

Seq2seq

Financial Forecasting

Take-Home Exercise: VGGNet

- ReLU
- cross-entropy
- epoch
- parameters
- hyperparams

- SGD
- learning rate
- batch size
- Adam
- dropout
- batchnorm

- input layer
- dense/FC layer
- convolutional
- max-pooling
 - flatten
- softmax layer

L for NL

Intro
NLP Application
Representations

Word Vectors
Vector-Space
Embedding
word2vec
Creating Word

Modeling NI

Preprocessing ROC Curve Sentiment Classification

Simple RNNs LSTMs

Functional API

Seq2seq

Financial Forecasting

Take-Home Exercise: VGGNet

- ReLU
- cross-entropy
- epoch
- parameters
- hyperparams

- SGD
- learning rate
- batch size
- Adam
- dropout
- batchnorm

- input layer
- dense/FC layer
- convolutional
- max-pooling
- flatten
- softmax layer

L for NL

Intro
NLP Application
Representations

Word Vectors

Vector-Space
Embedding

word2vec

Creating Word

Modeling NI

Preprocessing ROC Curve Sentiment Classification

Simple RNNs

Functional API

Seq2seq

Financial Forecasting

Take-Home Exercise: VGGNet

- ReLU
- cross-entropy
- epoch
- parameters
- hyperparams

- SGD
- learning rate
- batch size
- Adam
 - dropout
- batchnorm

- input layer
- dense/FC layer
- convolutional
- max-pooling
- flatten
- softmax layer

Review

DI for NI P

Intro
NLP Application
Representations

Word Vector Vector-Space Embedding

Vector-Space Embedding word2vec Creating Word Vectors

Modeling N Data

Preprocessing ROC Curve Sentiment Classification

RNNs Simple RNN

Functiona

Seq2sec

Financial Forecasting Review Take-Home Exercise

- 2 The Power and Elegance of Deep Learning for NLP Introduction to DL for NLP NLP Applications Computational Representations of NL
- 3 Word Vectors
- 4 Modeling Natural Language Data
- **5** Recurrent Neural Networks
- 6 Non-Sequential Model Architectures

Review

L for NLP Intro

Word Vector
Vector-Space
Embedding
word2vec
Creating Word

Modeling N Data

Preprocessing ROC Curve Sentiment Classification

RNNs Simple RNN LSTMs

Functiona API

Seq2seq

Financial Forecasting

- Review Take-Home Exercise
- 2 The Power and Elegance of Deep Learning for NLP Introduction to DL for NLP NLP Applications Computational Representations of NL
- 3 Word Vectors
- 4 Modeling Natural Language Data
- **5** Recurrent Neural Networks
- 6 Non-Sequential Model Architectures

DL for NL

Intro

Convenentation

Word Vector

.....

Embeddin

Creating Work

Modeling NI

Data

ROC Curve Sentiment

RNNs

Simple RNN:

Function

Seq2se

Financiai Forecastin

Two Core Concepts

- 1 Deep Learning
- 2 Natural Language Processing (NLP)

DL for NL

NLP Application

Word Vector

vvora vectors

Embedding word2vec Creating Word Vectors

Modeling NI

Preprocessin
ROC Curve
Sentiment
Classification

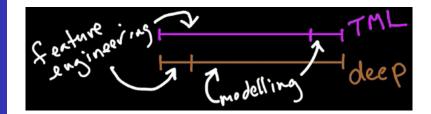
Classification

Eunction

API

Seqzse

Financiai Forecastin


Two Core Concepts

- Deep Learning
- 2 Natural Language Processing (NLP)

Units 5 and 6 - NLP

TML vs Deep Learning

OL for NI

Intro

Renresentatio

Word Vector

....

Embeddii.

Creating Word

Modeling NL

Data Preprocessing

ROC Curve Sentiment Classification

Simple RN

LSTMs

API

Seq2se

Financial Forecastin

Two Core Concepts

- 1 Deep Learning
- 2 Natural Language Processing (NLP)

DL for NL

Intro
NLP Application

Representation

Word Vectors

Embedding word2vec Creating Word

Modeling NI

Preprocessing ROC Curve Sentiment

Classificatio

Functions

API

Seqzse

Financial Forecasting

Two Core Concepts

- Deep Learning
- 2 Natural Language Processing (NLP)

OL for NIL

Intro
NLP Application

Mord Vootors

Word Vectors

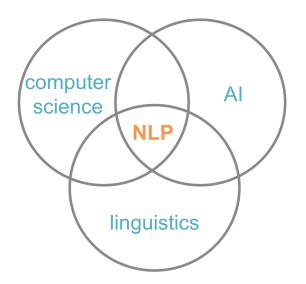
Embedding word2vec

word2vec
Creating Work
Vectors

Modeling NL

Preprocessin ROC Curve Sentiment

Sentiment Classification


Simple RNN: LSTMs

Functiona API

Seq2sec

Fınancıal Forecastinç

Natural Language Processing

- speech recognition (Echo, Siri, Cortana)

DL for NL

Intro NLP Applicat

representatio

Word Vector

Embedding word2vec Creating Word Vectors

Modeling NI

Preprocessing ROC Curve Sentiment

RNNs Simple RNN

Functiona

Seq2se

Financial Forecastin

- speech recognition (Echo, Siri, Cortana)
- search (typed into omnibox, spoken)
- classifying documents
- language translation
- chatbots

I for NI

NLP Applicati

Word Vectors

Vector-Space Embedding word2vec Creating Word Vectors

Modeling NI

Preprocessing ROC Curve Sentiment Classification

Simple RNN

LSTMs

S00300

Financial Forecastin

- speech recognition (Echo, Siri, Cortana)
- search (typed into omnibox, spoken)
- classifying documents
- language translation
- chatbots

DL for NL

NLP Application

Word Vector

Vector-Space Embedding word2vec Creating Word Vectors

Modeling NL

Preprocessing ROC Curve Sentiment

RNNs Simple RNN

Function

Seq2se

Financial Forecasting

- speech recognition (Echo, Siri, Cortana)
- search (typed into omnibox, spoken)
- classifying documents
- language translation
- chatbots

L for NL

NLP Application

Word Vector

Vector-Space Embedding word2vec Creating Word Vectors

Modeling NI

Preprocessing ROC Curve Sentiment

RNNs Simple RNN

LSTMs

Sanzea

Financial Forecasting

- speech recognition (Echo, Siri, Cortana)
- search (typed into omnibox, spoken)
- classifying documents
- language translation
- chatbots

Outline

Review

DI for NI

NLP Applications

Word Vector:
Vector-Space
Embedding
word2vec
Creating Word

Modeling N

Preprocessing ROC Curve Sentiment Classification

RNNs Simple RNN

Functiona API

Seq2seq

Financial Forecasting 1 Review Take-Home Exercise

2 The Power and Elegance of Deep Learning for NLP Introduction to DL for NLP NLP Applications Computational Representations of NL

3 Word Vectors

4 Modeling Natural Language Data

5 Recurrent Neural Networks

6 Non-Sequential Model Architectures

Easy

Review

DL for NLF

NLP Applications

Word Vector

Vector-Space

Creating Wor

Modeling NI

Data

ROC Curve Sentiment

Sentiment Classification

Simple RN

Functiona

Seg2se

Financial Forecastin

- spell checking
- synonym suggestions
- keyword search

Easy

Review

DL for NLF

NLP Applications

Representation

Word Vector

Vector-Space Embedding

Creating Work Vectors

Modeling NL Data

ROC Curve Sentiment

Classificatio

LSTMs

API

0642361

Financial Forecastin

- spell checking
- synonym suggestions
- keyword search

Easy

Review

DL for NLP

NLP Applications

Word Vector

vvoid vector

word2vec

Vectors

Data

ROC Curve Sentiment

RNNs

Functiona

Seq2se

Financial Forecastin

- spell checking
- synonym suggestions
- keyword search

DL for NL

NLP Applications

Representation

Word Vectors

Vector-Space

word2ver

Creating Work

Modeling NL

Preprocessing

Classification

Simple RNN

Functiona

Sea2se

Financial Forecastin

Intermediate

reading level

- extracting information
- predicting next words
- classification
- sequence generation
- time-series analysis

Intermediate

Review

DL for NL

NLP Applications

Word Vectors

Venter Space

.............

Creating Word

Modeling NI Data

Preprocessin
ROC Curve
Sentiment
Classification

RNNs

Functions

Seg2se

Financial Forecastin

- reading level
- extracting information
- predicting next words
- classification
- sequence generation
- time-series analysis

DL for NL

NLP Applications

Word Vector

vvora vector

Empeddiné

Word2vec Creating Word

Modeling NI

Preprocessin ROC Curve Sentiment

RNNs

Functiona

Sea2sea

Financial Forecasting

- reading level
- extracting information
- predicting next words
- classification
- sequence generation
- time-series analysis

DL for NL

NLP Applications

Word Vectors

Embedding word2vec Creating Word

Modeling NI

Preprocessir ROC Curve Sentiment Classification

KININS Simple RNN

Functiona

Seq2se

Financial Forecastin

- reading level
- · extracting information
- predicting next words
- classification
- sequence generation
- time-series analysis

DL for NL

NLP Applications

Word Vectors

Vector-Space Embedding word2vec Creating Word

Modeling NI

Preprocessin ROC Curve Sentiment Classification

RNNs Simple RNN

Functiona

Seq2se

Financial Forecastin

- reading level
- · extracting information
- predicting next words
- classification
- sequence generation
- time-series analysis

DL for NL

NLP Applications

Word Vectors

Vector-Space Embedding word2vec Creating Word

Modeling NI

Preprocessing ROC Curve Sentiment Classification

RNNs Simple RNN

Functions

Sea2sea

Financial Forecasting

- reading level
- · extracting information
- predicting next words
- classification
- sequence generation
- time-series analysis

Poviow

DL for NLF

NLP Applications

Vooter Space

Embedding

Creating Work

Modeling NL

Data Preprocessing

ROC Curve Sentiment Classification

RNN:

Simple RNNs

Function

Seq2se

Financial Forecastin

Complex

- machine translation
- question-answering
- chatbots

DL for NLF

NLP Applications

Representation

Word Vector

Vector-Space

word2vec

Vectors

Modeling NI

Preprocessing ROC Curve

Sentiment Classification

Simple RNN

Simple RNNs

Functiona

Seq2se

Financial Forecastin

Complex

- machine translation
- question-answering
- chatbots

JL for NLP

NLP Applications

Representation

Word Vector

Embedding word2vec

Vectors

Modeling Ni Data

Preprocessir ROC Curve Sentiment

Sentiment Classification

Simple RNN

Functiona

Seq2se

Financial Forecastin

Complex

- machine translation
- question-answering
- chatbots

Outline

Review

DL for NLP

NLP Applications
Representations

Word Vecto
Vector-Space
Embedding
word2vec
Creating Word
Vectors

Modeling N Data

Preprocessing ROC Curve Sentiment Classification

RNNs Simple RNN LSTMs

Functiona API

Seq2seq

Financial Forecasting

- 1 Review Take-Home Exercise
- 2 The Power and Elegance of Deep Learning for NLP Introduction to DL for NLP NLP Applications Computational Representations of NL
- 3 Word Vectors
- 4 Modeling Natural Language Data
- **5** Recurrent Neural Networks
- 6 Non-Sequential Model Architectures

Units 5 and 6 — NLP

Review

L for NL

NLP Applications

Word Vectors

Vector-Space Embedding word2vec Creating Word

Modeling NL

Preprocessing ROC Curve Sentiment

RNNs Simple RNI

Function

Seq2sec

Financial Forecasting

One-Hot Word Representations

,	The	cat	sat	oh	the	mat.
					1	
the cat	ا ٥	1	0	0		0
0 17	0	0	6	1	0	٥
:						

Outline

Review

L for NL

NLP Applications

Word Vectors

Vector-Space Embedding word2vec Creating Word Vectors

Modeling N Data

Preprocessin ROC Curve Sentiment Classification

RNNs Simple RNN

Functiona

Seq2seq

Financial Forecastino 1 Review Take-Home Exercise

2 The Power and Elegance of Deep Learning for NLP

Word Vectors Vector-Space Embedding word2vec Creating Word Vectors with word2vec

- 4 Modeling Natural Language Data
- **5** Recurrent Neural Networks
- 6 Non-Sequential Model Architectures

Outline

Review

L for NL

NLP Applications

Word Vector Vector-Space Embedding

Embedding word2vec Creating Word Vectors

Modeling N Data

Preprocessin ROC Curve Sentiment Classification

RNNs Simple RNN

Functiona

Sea2sea

Financial Forecasting Review Take-Home Exercise

2 The Power and Elegance of Deep Learning for NLP

Word Vectors Vector-Space Embedding word2vec Creating Word Vectors with word2vec

- 4 Modeling Natural Language Data
- **5** Recurrent Neural Networks
- 6 Non-Sequential Model Architectures

Units 5 and 6 — NLP

Review

OL for NI

NLP Application:

Representation

Word Vector

Vector-Space Embedding

word2vec

Creating Wor

Modeling NL

Preprocessing ROC Curve

Sentiment Classification

KININS Simple E

LSTMs

API

Seqzse

Financial

JR Firth (1957)

"You shall know a word by the company it keeps"

Units 5 and 6 — NLP

Review

OL for NIL

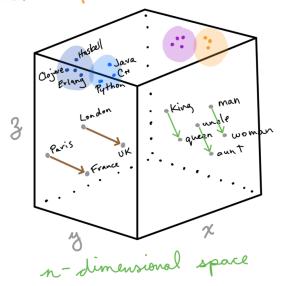
Intro NLP Application

Word Vectors

Vector-Space Embedding word2vec

Creating Work Vectors

Modeling NL


Preprocessir
ROC Curve
Sentiment

RNNs Simple BN

Functiona

Seq2seq

Financial Forecasting Vector Representations of Words

Word Vector Arithmetic

Reviev

L for NL

NLP Application
Representations

Word Vectors
Vector-Space
Embedding
word2vec
Creating Word

Modeling NL Data

Preprocessing ROC Curve Sentiment Classification

Simple RNN

Functiona API

Seq2sec

Financial Forecasting

$$V_{\text{king}} - V_{\text{man}} + V_{\text{woman}} = V_{?}$$
 $V_{\text{jeff_bezos}} - V_{\text{amazon}} + V_{\text{facebook}} = V_{?}$
 $V_{\text{windows}} - V_{\text{microsoft}} + V_{\text{google}} = V_{?}$
 $V_{\text{cu}} - V_{\text{copper}} + V_{\text{gold}} = V_{?}$

Units 5 and 6 — NLP

Review

DI for NI D

IIIIO

Word Vector

Vector-Space Embedding

.

Creating Word

Modeling NL

Dala

Preprocessir

ROC Curve

Sentiment

Classification

KNNs

Simple RNN

Function

_ _

0642366

Financiai Forecastin [word2viz demo]

L for NL

NLP Application

Word Vectors

Vector-Space Embedding word2vec Creating Word

Modeling NL

Preprocessin
ROC Curve
Sentiment
Classification

RNNs Simple RNN

Functiona API

Seq2sec

Financial Forecasting

Word Representations

One-Hot

Vector-Based

lack nuance

handle new words poorly

subjective

laborious, manual taxonomies

word similarity ignored

unwieldy with large vocabulary

extremely nuanced

seamlessly incorporate new words

driven by natural language data

fully-automatic

word similarity = closeness in space

accommodate large vocabularies

Outline

Review

DL for NL

NLP Application

Word Vector Vector-Space Embedding

word2vec Creating Wor Vectors

Modeling N Data

Preprocessin ROC Curve Sentiment Classification

RNNs Simple RNN

Functiona API

Seq2seq

Financial Forecasting

- Review Take-Home Exercise
- 2 The Power and Elegance of Deep Learning for NLP
- Word Vectors Vector-Space Embedding word2vec Creating Word Vectors with word2vec
- 4 Modeling Natural Language Data
- **5** Recurrent Neural Networks
- 6 Non-Sequential Model Architectures

Units 5 and 6 — NLP

Review

OI for NI

NLP Application

Representation

Word Vector

Vector-Space Embedding

word2vec

Creating Word

Modeling NL

Preprocessing ROC Curve

Sentiment Classification

RNN

Simple RNNs

Functiona

Seq2se

Financial Forecastin

JR Firth (1957)

"You shall know a word by the company it keeps"

Units 5 and 6 - NLP

word2vec

Word Representations

predicts		relative strengths		
Skip-Gram (SG)	context given target	small data setrare words		
CBOW	target given context	 many times faster slightly better for frequent words 		

DL for NL

NLP Application

Word Vector

Vector-Space

word2vec

Creating Word

Modeling NI

Data

ROC Curve Sentiment

Sentiment Classificatio

Simple RNN

Functiona

Seq2se

Financiai Forecastin

Evaluating Word Vectors

- 1 intrinsic
- 2 extrinsic

word2vec

Evaluating Word Vectors

- intrinsic
- extrinsic

DL for NL

NLP Application

Word Vecto

Vector-Space

Embedding word2vec

Creating Wor

Modeling N

Data Preprocessing

ROC Curve Sentiment

Sentiment Classificatio

Simple RNN

LSTMs

API

Ocqzsc

Financial Forecastin

word2vec Hyperparameters

- 1 n dimensions
- 2 window size (SG ~10, CBOW ~5)
- 3 n iterations
- data set size

word2vec

word2vec Hyperparameters

- n dimensions
- 2 window size (SG ~10, CBOW ~5)

L for NL

NLP Application

Word Vectors

Vector-Space

word2vec

Creating Work

Modeling N

Preprocessing

ROC Curve Sentiment Classification

Simple RNN

LSTMs

Function: API

Seq2se

Financial Forecasting

word2vec Hyperparameters

- 1 n dimensions
- 2 window size (SG ~10, CBOW ~5)
- 3 *n* iterations
- data set size

L for NL

NLP Application

Word Vectors

Embedding

word2vec Creating Wor

Modeling N

Preprocessing ROC Curve Sentiment

Sentiment Classification

Simple RNN

Function

Seq2se

Financial Forecastin

word2vec Hyperparameters

- 1 n dimensions
- 2 window size (SG ~10, CBOW ~5)
- 3 *n* iterations
- 4 data set size

DL for NL

NLP Application

Word Vector

Vector-Space

word2vec

Creating Wo

Modeling N

Data

Preprocessin ROC Curve Sentiment

Classification

LSTMs

Function: API

Seqzse

Financial Forecastin

Transfer Learning

Pre-Trained Word Vectors

- 1 word2vec: code.google.com/archive/p/word2vec
- 2 GloVe: nlp.stanford.edu/projects/glove
- 3 fastText: fasttext.cc (157 languages)
- 4 BERT: github.com/google-research/bert (hierarchical)

DL for NL

NLP Applicatio

Word Vector

Vector-Space

word2ve

Vectors

Modeling N

Preprocessing ROC Curve Sentiment

Sentiment Classification

Function:

API

oeyzsei

Financial Forecastin

Transfer Learning

Pre-Trained Word Vectors

- 1 word2vec: code.google.com/archive/p/word2vec
- 2 GloVe: nlp.stanford.edu/projects/glove
- 3 fastText: fasttext.cc (157 languages)
- 4 BERT: github.com/google-research/bert (hierarchical)

Review

L for NL

NLP Applicatio

Word Vectors

Embedding

WOIGEVEC

.....

Modeling NI Data

ROC Curve Sentiment

RNNs

Functiona

Seq2se

Financial Forecastin

Transfer Learning

Pre-Trained Word Vectors

1 word2vec: code.google.com/archive/p/word2vec

2 GloVe: nlp.stanford.edu/projects/glove

3 fastText: fasttext.cc (157 languages)

4 BERT: github.com/google-research/bert (hierarchical)

Review

DL for NL

NLP Application

Word Vectors

Vector-Space Embedding

word2ve

Creating Wor

Modeling NL

Data Preprocessing

ROC Curve Sentiment Classification

Simple RNN

Functiona

Sea2se

Financial Forecasting

Transfer Learning

Pre-Trained Word Vectors

1 word2vec: code.google.com/archive/p/word2vec

2 GloVe: nlp.stanford.edu/projects/glove

3 fastText: fasttext.cc (157 languages)

4 BERT: github.com/google-research/bert (hierarchical)

Outline

Review

DI for NI

NLP Applications
Representations

Word Vector Vector-Space Embedding word2vec Creating Word Vectors

Modeling N

Preprocessin ROC Curve Sentiment Classification

RNNs Simple RNN

Functiona

Seq2seq

Financial Forecastino Review Take-Home Exercise

2 The Power and Elegance of Deep Learning for NLP

Word Vectors Vector-Space Embedding word2vec Creating Word Vectors with word2vec

- 4 Modeling Natural Language Data
- **5** Recurrent Neural Networks
- 6 Non-Sequential Model Architectures

Review

DI for NI

Intro
NLP Applications

Word Voctor

Word Vectors

Embedding word2vec

Creating Word Vectors

Modeling N

Preprocessing

ROC Curve Sentiment

RNNs

Simple RNN:

Function

S00300

Ocqzscq

Forecastin

[creating word vectors notebook]

Outline

Review

DL for NL

NLP Applications

Word Vectors
Vector-Space
Embedding
word2vec
Creating Word
Vectors

Modeling NL Data

Preprocessing ROC Curve Sentiment Classification

RNNs Simple RNN

Functiona API

Seq2seq

Financial Forecasting

- 1 Review Take-Home Exercise
- 2 The Power and Elegance of Deep Learning for NLP
- 3 Word Vectors
- 4 Modeling Natural Language Data
 Best Practices for Preprocessing NLP Data
 The Area Under the ROC Curve
 Sentiment Classification
- **5** Recurrent Neural Networks
- 6 Non-Sequential Model Architectures

Outline

Review

L for NL

NLP Applications
Representations

Word Vector:
Vector-Space
Embedding
word2vec
Creating Word
Vectors

Modeling N Data

Preprocessing ROC Curve Sentiment Classification

Simple RNN

Functiona API

Seq2sec

Financial Forecasting

- Review Take-Home Exercise
- 2 The Power and Elegance of Deep Learning for NLP
- 3 Word Vectors
- 4 Modeling Natural Language Data
 Best Practices for Preprocessing NLP Data
 The Area Under the ROC Curve
 Sentiment Classification
- **5** Recurrent Neural Networks
- 6 Non-Sequential Model Architectures

Review

DL for NL

NLP Applicatio

Word Vector

Word Vectors

word?voc

Creating Word

Modeling NL

Preprocessing

ROC Curve

Sentiment Classificatio

Simple RN

Function

Seg2se

Financiai Forecastin

Best Practices for Preprocessing NLP Data

[NL preprocessing best practices notebook]

Outline

ROC Curve

Modeling Natural Language Data Best Practices for Preprocessing NLP Data The Area Under the ROC Curve Sentiment Classification

L for NL

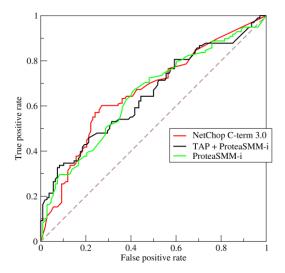
NLP Application

Word Voctor

Vector-Space Embedding word2vec Creating Word

Modeling NI

Preprocessin ROC Curve Sentiment


Classification RNNs

Functiona

Seq2seq

Financial Forecasting

The Area Under the ROC Curve

Outline

Review

L for NL

Intro
NLP Applications
Representations

Word Vectors
Vector-Space
Embedding
word2vec
Creating Word
Vectors

Modeling N

Preprocessing ROC Curve Sentiment Classification

RNNs Simple RNN

Functiona API

Seq2seq

Financial Forecasting

- 1 Review Take-Home Exercise
- 2 The Power and Elegance of Deep Learning for NLP
- 3 Word Vectors
- 4 Modeling Natural Language Data
 Best Practices for Preprocessing NLP Data
 The Area Under the ROC Curve
 Sentiment Classification
- **5** Recurrent Neural Networks
- 6 Non-Sequential Model Architectures

Review

OL for NI

NLP Applications

Word Vector

Vector-Space

word2vec

Vectors

Modeling NL Data

Preprocessin

Sentiment

Classification

Simple RNN

Functiona

000000

0042000

Financiai Forecastin

Dense Net Classification

[dense sentiment classifier notebook]

Review

OL for NI

NLP Application

Representation

Word Vector

Vector-Space

Embedding

Creating Word

Modeling NL

Data

ROC Curve

Sentiment

Classification

RNN

Simple RNN LSTMs

Functions API

Seq2se

Financiai Forecastin

ConvNet Classification

[convolutional sentiment classifier notebook]

Outline

neview

Review Take-Home Exercis

NLP Application

2 The Power and Elegance of Deep Learning for NLP

Word Vecto
Vector-Space
Embedding
word2vec
Creating Word

3 Word Vectors

Modeling N Data

4 Modeling Natural Language Data

ROC Curve Sentiment Classification

6 Recurrent Neural Networks
Simple RNNs
LSTMs

Function: API

6 Non-Sequential Model Architectures

Financial

Sequence-to-Sequence Models

Outline

Review

L for N

NLP Application

Representations

Word Vector
Vector-Space
Embedding
word2vec

Modeling N

Preprocessing ROC Curve Sentiment Classification

Simple RNNs

Functional API

Seq2sec

Financial Forecasting Review Take-Home Exercise

2 The Power and Elegance of Deep Learning for NLP

3 Word Vectors

4 Modeling Natural Language Data

6 Recurrent Neural Networks Simple RNNs LSTMs

6 Non-Sequential Model Architectures

7 Sequence-to-Sequence Models

RNN Theory

Review

DI for NI

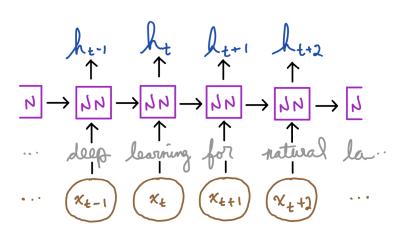
NLP Application

Word Vectors

Vector-Space Embedding word2vec

Modeling NL

Preprocessing ROC Curve Sentiment Classification


RNN:

Simple RNNs LSTMs

Functiona API

Seq2sec

Financial Forecasting

Review

DL for NI

NI P Applications

Representation

Word Vectors

Vector-Space Embedding

Creating Work

Vectors

Modeling NL

Preprocessir ROC Curve

Sentiment Classification

RNNs

Simple RNNs

Function

Sea2sea

Financial Forecastin

RNNs in Practice

[rnn notebook]

Outline

Review

L for NI

10

1 Review Take-Home Exercise

2 The Power and Flegano

3 Word Vectors

4 Modeling Natural Language Data

5 Recurrent Neural Networks
Simple RNNs
LSTMs

6 Non-Sequential Model Architectures

Sequence-to-Sequence Models

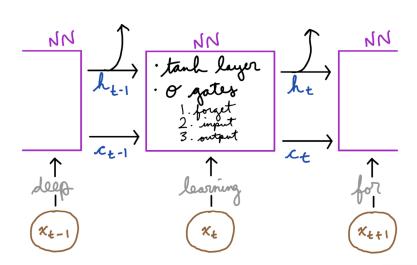
DATA SCIENCE CADEMY

NLP Application

Creating Word Vectors

Preprocessing
ROC Curve
Sentiment

RNNs Simple RNN


Functiona API

Seq2sec

Financial Forecasting

LSTM Theory

LSTMs

Review

OI for NI

NLP Applications

Representation

Word Vector

Vector-Space

word2vec

Creating Word

Modeling NL

Preprocessing ROC Curve

Sentiment Classification

RNNs

Simple RNN LSTMs

Function

Seq2se

Financial Forecastin

LSTMs in Practice

[vanilla LSTM and GRU notebooks]

Review

DL for NL

NLP Applications

Representation

Word Vectors

Vector-Space Embedding

Creating Word

Modeling NL

Preprocessing ROC Curve Sentiment

Classificatio

Simple RNN

Functiona API

seq2se

Financial Forecasting

Bi-Directional LSTMs

[Bi-LSTM notebook]

Review

OL for NI

NLP Application

Word Vecto

Vector-Space Embedding

word2vec Creating Word Vectors

Modeling NL

Preprocessing ROC Curve Sentiment

RNNs Simple RNN

Functiona

Seq2se

Financial Forecasting

Stacked LSTMs

[stacked LSTM and ye olde stackeroo notebooks]

Outline

Review

L for N

o P Application presentation

Word Vector

Vector-Space

Embedding

word2vec

Modeling N

Preprocessing ROC Curve Sentiment Classification

Simple RNN LSTMs

Functional API

Seq2seq

Financial Forecasting 1 Review Take-Home Exercise

2 The Power and Elegance of Deep Learning for NLP

3 Word Vectors

4 Modeling Natural Language Data

6 Recurrent Neural Networks

6 Non-Sequential Model Architectures

7 Sequence-to-Sequence Models

8 Financial Forecasting

Review

DL for NL

NLP Application

Representation

Word Vectors

Vector-Space

Embedding

W0102700

Modeling NI

Nodeling INL

Preprocessi ROC Curve

Sentiment

DNINI

Simple RNN:

Functional API

Seq2se

Financial Forecastin

Non-Sequential Model Architectures

[multi-ConvNet notebook]

Outline

Review

L for NI

Intro
NLP Application
Representation

Word Vector
Vector-Space
Embedding
word2vec

Modeling N

Preprocessing ROC Curve Sentiment Classification

Simple RNN LSTMs

Functional API

Seq2seq

Financial Forecasting Review Take-Home Exercise

2 The Power and Elegance of Deep Learning for NLP

3 Word Vectors

4 Modeling Natural Language Data

6 Recurrent Neural Networks

6 Non-Sequential Model Architectures

7 Sequence-to-Sequence Models

8 Financial Forecasting

Review

OL for NI

NLP Applications

Word Vector

Vector-Space

word2vec

Modeling NI

Preprocessing ROC Curve

Sentiment Classification

KININS
Simple RN

Functiona

Seq2seq

Financial Forecasting

Sequence Generation

[Sequence Generation notebook]

I for NI

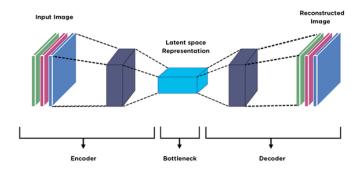
NLP Application

Word Vectors

Vector-Space Embedding word2vec Creating Word Vectors

Modeling NL

Preprocessin ROC Curve Sentiment


RNNs Simple RNN

Functiona API

Seq2seq

Financial Forecastin

Autoencoders and Attention

DL for NL

NLP Application

Word Vector

Vector-Space Embedding word2vec Creating Word

Modeling NI

Preprocessin
ROC Curve
Sentiment

RNNs Simple RN

LSTMs

Functiona API

Seq2seq

Financial Forecastin

Transfer Learning in NLP

Seminal Models

- ULMFiT: universal language model fine-tuning
- ELMo: embeddings from language models
- BERT: bi-directional encoder representations from transformers (for long-range attention)
- smaller derivations of BERT, e.g., RoBERTa, DistilBERT
- GPT-2: generative pre-trained transformer 2

L for NL

NLP Application

Word Vector

Vector-Space Embedding word2vec Creating Word

Modeling NI

Preprocessing
ROC Curve
Sentiment
Classification

RNNs Simple RNI

LSTMs

API

Seq2seq

Financial Forecasting

Transfer Learning in NLP

Seminal Models

- ULMFiT: universal language model fine-tuning
- ELMo: embeddings from language models
- BERT: bi-directional encoder representations from transformers (for long-range attention)
- smaller derivations of BERT, e.g., RoBERTa, DistilBERT
- GPT-2: generative pre-trained transformer 2

L for NL

NLP Application

Word Vectors

Vector-Space
Embedding

Vectors

Modeling NL Data

Preprocessing ROC Curve Sentiment Classification

RNNs Simple RN

Functiona API

Seq2seq

Financial Forecasting

Transfer Learning in NLP

Seminal Models

- ULMFiT: universal language model fine-tuning
- ELMo: embeddings from language models
- BERT: bi-directional encoder representations from transformers (for long-range attention)
- smaller derivations of BERT, e.g., RoBERTa, DistilBERT
- GPT-2: generative pre-trained transformer 2

L for NL

NLP Application

Word Vectors

Vector-Space
Embedding

word2vec

Modeling NL

Preprocessing
ROC Curve
Sentiment
Classification

Simple RN

Functiona API

Seq2seq

Financial Forecasting

Transfer Learning in NLP

Seminal Models

- ULMFiT: universal language model fine-tuning
- ELMo: embeddings from language models
- BERT: bi-directional encoder representations from transformers (for long-range attention)
- smaller derivations of BERT, e.g., RoBERTa, DistilBERT
- GPT-2: generative pre-trained transformer 2

L for NL

NLP Application

Word Vectors
Vector-Space
Embedding
word2vec
Creating Word

Modeling NI

Preprocessing
ROC Curve
Sentiment
Classification

RNNs Simple RNN

Functiona API

Seq2seq

Financial Forecasting

Transfer Learning in NLP

Seminal Models

- ULMFiT: universal language model fine-tuning
- ELMo: embeddings from language models
- BERT: bi-directional encoder representations from transformers (for long-range attention)
- smaller derivations of BERT, e.g., RoBERTa, DistilBERT
- GPT-2: generative pre-trained transformer 2

— NLP

Units 5 and 6

Outline

DL for NL

1 Review Take-Home Exercise

NLP Application

The Dower and Elegance of Doon Learning for

Word Vector
Vector-Space
Embedding

Word Vectors

Modeling N

4 Modeling Natural Language Date

ROC Curve Sentiment Classificatio

6 Recurrent Neural Networks

Function: API 6 Non-Sequential Model Architectures

Seq2se

7 Sequence-to-Sequence Models

Financial Forecasting

8 Financial Forecasting

Financial Forecasting

Financial Forecasting

See *Time Series Prediction* on my [resources page]

Review

OL for NI

Intro NLP Application

Word Vector

Embedding word2vec Creating Wor

Modeling NL

Preprocessin ROC Curve Sentiment

RNNs

LSTMs

Functional API

Seq2sec

Financial Forecasting

Assessing Your Deep Learning Project III

Review

DL for NL

NLP Application

Word Vectors

··· -

Embeddi

Creating Wo

Modeling N

Data Preprocessing

ROC Curve Sentiment Classification

RNNs Simple RNN

Functiona API

Seq2sec

Financial Forecasting

Assessing

- 1 split your data
 - training set (80% for optimizing parameters)
 - validation set (10% for hyperparameters)
 - test set (10% don't touch yet!)
- 2 build and assess architecture
 - · get above chance (simplifying problem, if necessary)
 - do existing performance benchmarks exist?
 - if not, use a simple architecture as benchmark
- 3 "teamwork makes the dream work" (?)

Review

DL for NL

NLP Application

Word Vector

Embedding word2vec

Modeling NL

Preprocessing ROC Curve Sentiment

RNNs Simple RNN

Functiona API

Seq2sec

Financial Forecasting

Assessing

- 1 split your data
 - training set (80% for optimizing parameters)
 - validation set (10% for hyperparameters)
 - test set (10% don't touch yet!)
- 2 build and assess architecture
 - get above chance (simplifying problem, if necessary)
 - do existing performance benchmarks exist?
 - if not, use a simple architecture as benchmark
- 3 "teamwork makes the dream work" (?)

Units 5 and 6

Review

DL for NL

NLP Application

Word Vectors

Vector-Space Embedding word2vec Creating Word

Modeling NL

Preprocessing ROC Curve Sentiment Classification

RNNs Simple RNN

Functiona

Seq2sed

Financial Forecasting

Assessing

- 1 split your data
 - training set (80% for optimizing parameters)
 - validation set (10% for hyperparameters)
 - test set (10% don't touch yet!)
- 2 build and assess architecture
 - get above chance (simplifying problem, if necessary)
 - do existing performance benchmarks exist?
 - if not, use a simple architecture as benchmark
- (?) "teamwork makes the dream work"

Review

DL for NL

NLP Application

Word Vector

Vector-Space Embedding word2vec Creating Word

Modeling NI

Preprocessing ROC Curve Sentiment Classification

RNNs Simple RNN

Functiona

Seq2se

Financial Forecasting

Assessing

- 1 split your data
 - training set (80% for optimizing parameters)
 - validation set (10% for hyperparameters)
 - test set (10% don't touch yet!)
- 2 build and assess architecture
 - · get above chance (simplifying problem, if necessary)
 - do existing performance benchmarks exist?
 - if not, use a simple architecture as benchmark
- (?)
 *teamwork makes the dream work

Review

DL for NL

NLP Application

Word Vector

Embedding word2vec Creating Word

Modeling NI

Preprocessing ROC Curve Sentiment

RNNs Simple RNN:

Functiona API

Seq2sec

Financial Forecasting

Assessing

- 1 split your data
 - training set (80% for optimizing parameters)
 - validation set (10% for hyperparameters)
 - test set (10% don't touch yet!)
- 2 build and assess architecture
 - get above chance (simplifying problem, if necessary)
 - do existing performance benchmarks exist?
 - if not, use a simple architecture as benchmark
- 3 "teamwork makes the dream work" (?)

Review

L for NL

NLP Application

Word Vector

vector-Space Embedding word2vec Creating Word Vectors

Modeling NI

Preprocessing
ROC Curve
Sentiment
Classification

RNNs Simple RNN

LSTMs

Sen2se

Financial Forecasting

Assessing

- 1 split your data
 - training set (80% for optimizing parameters)
 - validation set (10% for hyperparameters)
 - test set (10% don't touch yet!)
- 2 build and assess architecture
 - get above chance (simplifying problem, if necessary)
 - do existing performance benchmarks exist?
 - if not, use a simple architecture as benchmark
- (?)
 *teamwork makes the dream work

Review

L for NL

NLP Application

Word Vector

Embedding word2vec Creating Word

Modeling NI

Preprocessing ROC Curve Sentiment

RNNs Simple RNN:

Functiona API

Seq2sed

Financial Forecasting

Assessing Your Deep Learning Project III

- 1 split your data
 - training set (80% for optimizing parameters)
 - validation set (10% for hyperparameters)
 - test set (10% don't touch yet!)
- 2 build and assess architecture
 - get above chance (simplifying problem, if necessary)
 - do existing performance benchmarks exist?
 - if not, use a simple architecture as benchmark
- (?)
 *teamwork makes the dream work

Review

L for NL

NLP Application

Word Vector:
Vector-Space
Embedding

Embedding word2vec Creating Word Vectors

Modeling NI

Preprocessing
ROC Curve
Sentiment
Classification

KNNS
Simple RNN:

Functiona API

Seq2sed

Financial Forecasting

Assessing

- 1 split your data
 - training set (80% for optimizing parameters)
 - validation set (10% for hyperparameters)
 - test set (10% don't touch yet!)
- 2 build and assess architecture
 - get above chance (simplifying problem, if necessary)
 - do existing performance benchmarks exist?
 - if not, use a simple architecture as benchmark
- 3 "teamwork makes the dream work" (?)

Review

DL for NL

NLP Application

Word Vector: Vector-Space Embedding word2vec

Modeling NL

Preprocessing ROC Curve Sentiment Classification

RNNs Simple RNN

Functiona API

Seq2sec

Financial Forecasting

Assessing

- 1 split your data
 - training set (80% for optimizing parameters)
 - validation set (10% for hyperparameters)
 - test set (10% don't touch yet!)
- 2 build and assess architecture
 - get above chance (simplifying problem, if necessary)
 - do existing performance benchmarks exist?
 - if not, use a simple architecture as benchmark
- 3 "teamwork makes the dream work" (?)

