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Take-Home Exercise: VGGNet

Talk through the purpose of every line in the [VGGNet
notebook], including all of the following terms:
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Take-Home Exercise: VGGNet

Talk through the purpose of every line in the [VGGNet
notebook], including all of the following terms:

e RelLU
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Take-Home Exercise: VGGNet

Talk through the purpose of every line in the [VGGNet
notebook], including all of the following terms:

e RelU
e Cross-entropy
e epoch
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Talk through the purpose of every line in the [VGGNet
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RelLU
cross-entropy
epoch
parameters
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Take-Home Exercise: VGGNet

Talk through the purpose of every line in the [VGGNet
notebook], including all of the following terms:

RelLU
cross-entropy
epoch
parameters
hyperparams
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Take-Home Exercise: VGGNet

Talk through the purpose of every line in the [VGGNet
notebook], including all of the following terms:

RelU * SGD

cross-entropy
epoch
parameters
hyperparams
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Take-Home Exercise: VGGNet

Talk through the purpose of every line in the [VGGNet
notebook], including all of the following terms:

e SGD
e learning rate

RelLU
cross-entropy
epoch
parameters
hyperparams
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Take-Home Exercise: VGGNet

Talk through the purpose of every line in the [VGGNet
notebook], including all of the following terms:

e RelU * SGD
e learning rate
e cross-entropy :
e batch size
e epoch
e parameters
e hyperparams
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Talk through the purpose of every line in the [VGGNet
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e RelU * SGD
e learning rate
e cross-entropy :
e batch size
e epoch
e Adam
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e hyperparams
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Take-Home Exercise: VGGNet

Talk through the purpose of every line in the [VGGNet
notebook], including all of the following terms:

e RelU * SGD
e learning rate
e cross-entropy :
e batch size
e epoch
e Adam
e parameters
e dropout
e hyperparams
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Take-Home Exercise: VGGNet

Talk through the purpose of every line in the [VGGNet
notebook], including all of the following terms:

e SGD
e RelLU _

e learning rate
e cross-entropy :

e batch size
e epoch

e Adam
e parameters

e dropout
e hyperparams

e batchnorm
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Take-Home Exercise: VGGNet

Talk through the purpose of every line in the [VGGNet
notebook], including all of the following terms:

e SGD e input layer
« RelU | putiay
e learning rate
e Ccross-entropy :
e batch size
e epoch
e Adam
e parameters
e dropout
e hyperparams
e batchnorm
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Take-Home Exercise: VGGNet

Talk through the purpose of every line in the [VGGNet
notebook], including all of the following terms:

« RelU e SGD e input layer
e learning rate e dense/FC layer
e cross-entropy :
e batch size
e epoch
e Adam
e parameters
e dropout
e hyperparams
e batchnorm

NYCDATA SCIENCE
ACADEMY


https://github.com/the-deep-learners/nyc-ds-academy/blob/master/notebooks/vggnet_in_keras.ipynb
https://github.com/the-deep-learners/nyc-ds-academy/blob/master/notebooks/vggnet_in_keras.ipynb

Units 5 and 6
— NLP

Take-Home Exercise: VGGNet

Talk through the purpose of every line in the [VGGNet
notebook], including all of the following terms:

e SGD e input layer
« RelU putiay

e learning rate e dense/FC layer
e cross-entropy : .

e batch size e convolutional
e epoch

e Adam
e parameters

e dropout
e hyperparams

e batchnorm
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Take-Home Exercise: VGGNet

Talk through the purpose of every line in the [VGGNet
notebook], including all of the following terms:

e SGD e input layer
« RelU putiay

e learning rate e dense/FC layer
e cross-entropy : .

e batch size e convolutional
e epoch _

e Adam e max-pooling
e parameters

e dropout
e hyperparams

e batchnorm
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Take-Home Exercise: VGGNet

Talk through the purpose of every line in the [VGGNet
notebook], including all of the following terms:

e SGD e input layer
« RelU putiay

e learning rate e dense/FC layer
e cross-entropy : _

e batch size e convolutional
e epoch _

e Adam e max-pooling
e parameters

e dropout e flatten
e hyperparams

e batchnorm ¢ softmax layer

0
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Natural Language Processing

computer
science
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e speech recognition (Echo, Siri, Cortana)
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Examples of NLP in Industry

e speech recognition (Echo, Siri, Cortana)
e search (typed into omnibox, spoken)
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Examples of NLP in Industry

speech recognition (Echo, Siri, Cortana)
search (typed into omnibox, spoken)

classifying documents

language translation

chatbots
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@® The Power and Elegance of Deep Learning for NLP

Computational Representations of NL
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Representations

e | o o | 0
cat O | ° 0 °
on O o ! 0
nuv;'uxu.t oV L\S

NYCDATA SCIENCE
ACADEMY



Units 5 and 6
— NLP

Outline

@® The Power and Elegance of Deep Learning for NLP

NLP Applications

NLP Applications
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NLP Applications

e spell checking
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NLP Applications

e spell checking
e synonym suggestions
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NLP Applications

e spell checking
e synonym suggestions
e keyword search

Easy

NYCDATA SCIENCE
ACADEMY



Units 5 and 6
— NLP

Intermediate

NLP Applications

e reading level
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Intermediate

NLP Applications

e reading level
e extracting information
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NLP Applications

e reading level
e extracting information
e predicting next words

Intermediate
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Intermediate

NLP Applications

reading level

extracting information
predicting next words
classification
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Intermediate

NLP Applications

reading level

extracting information
predicting next words
classification

sequence generation
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Intermediate

NLP Applications

reading level

extracting information

predicting next words
classification
sequence generation
time-series analysis
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NLP Applications

e machine translation
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NLP Applications

e machine translation
e question-answering
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NLP Applications

e machine translation
e question-answering
e chatbots
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Word Vectors

® Word Vectors
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Vector-Space
Embedding

® Word Vectors
Vector-Space Embedding
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JR Firth (1957)

“You shall know a word by the company it keeps”
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Vector-Space
Embedding
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Word Vector Arithmetic

V. -V +V =V
king man woman ?
vV -V +V =V
jeff bezos amazon facebook ?
V . -V +V =V
windows microsoft google ?
-V +V =V
cu copper gold ?
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Vector-Space
Embedding

[word2viz demo]
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https://lamyiowce.github.io/word2viz/

Units 5 and 6
— NLP

Word Representations

Vector-Space

Embedding
lack nuance extremely nuanced
handle new words poorly seamlessly incorporate new words
subjective driven by natural language data
laborious, manual taxonomies fully-automatic
word similarity ignored word similarity = closeness in space
unwieldy with large vocabulary accommodate large vocabularies
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@ Word Vectors

word2vec
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JR Firth (1957)

“You shall know a word by the company it keeps”
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Word Representations

predicts | relative strengths

word2vec

Skip-Gram (SG) context given target o small data set
® rare words

CBOW target given context e many times faster
® slightly better for
‘ frequent words
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Evaluating Word Vectors

© intrinsic
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Evaluating Word Vectors

© intrinsic
® exirinsic
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word2vec Hyperparameters

© ndimensions
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word2vec Hyperparameters

© ndimensions
® window size (SG ~10, CBOW ~5)
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word2vec Hyperparameters

© ndimensions
® window size (SG ~10, CBOW ~5)
® niterations
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word2vec Hyperparameters

© ndimensions

® window size (SG ~10, CBOW ~5)
® niterations

@ data set size
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® Word Vectors

Creating Word
Vectors

Creating Word Vectors with word2vec
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[ creating word vectors notebook ]

Creating Word
Vectors
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Modeling NL

Data

@ Modeling Natural Language Data
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@ Modeling Natural Language Data
Best Practices for Preprocessing NLP Data
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Best Practices for
Preprocessing NLP Data

[ NL preprocessing best practices notebook ]
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@ Modeling Natural Language Data

The Area Under the ROC Curve
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ROC Curve

True positive rate

0.8

0.6

0.4

0.2

The Area Under the ROC Curve

s
’
rd
’
r'd
e —— NetChop C-term 3.0
e — TAP + ProteaSMM-i
’ — ProteaSMM-i
’
,
.
y
| 1 1 | L |
0.2 0.4 0.6 0.8 1

False positive rate
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Outline

Sentiment

@ Modeling Natural Language Data

Sentiment Classification
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Dense Net Classification

[ dense sentiment classifier notebook ]
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ConvNet Classification

[ convolutional sentiment classifier notebook ]
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@ Recurrent Neural Networks
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Simple RNNs

@ Recurrent Neural Networks
Simple RNNs
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RNNs in Practice

[ rnn notebook ]

Simple RNNs
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Outline

@ Recurrent Neural Networks

LSTMs ~
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LSTM Theory
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LSTMs in Practice

[ vanilla LSTM and GRU notebooks ]
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Bi-Directional LSTMs

[ BI-LSTM notebook ]
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Stacked LSTMs

[ stacked LSTM and ye olde stackeroo notebooks ]
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Outline

Parallel Nets

@ Parallel Network Architectures TR
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Parallel Network Architectures

[ multi-ConvNet notebook ]

Parallel Nets
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Parallel Nets
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Assessing

Your Deep Learning Project Il

© split your data

Parallel Nets
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Assessing

Your Deep Learning Project Il

@ split your data
e training set (80% — for optimizing parameters)

Parallel Nets
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Assessing

Your Deep Learning Project Il

@ split your data
e training set (80% — for optimizing parameters)
¢ validation set (10% — for hyperparameters)

Parallel Nets

NYCDATA SCIENCE
ACADEMY



Units 5 and 6
— NLP

Assessing

Your Deep Learning Project Il

@ split your data
e training set (80% — for optimizing parameters)
¢ validation set (10% — for hyperparameters)
o test set (10% — don’t touch yet!)

Parallel Nets
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Assessing

Your Deep Learning Project Il

@ split your data
e training set (80% — for optimizing parameters)
¢ validation set (10% — for hyperparameters)
o test set (10% — don’t touch yet!)

® build and assess architecture

Parallel Nets

NYCDATA SCIENCE
ACADEMY



Units 5 and 6
— NLP

Assessing

Your Deep Learning Project Il

@ split your data
e training set (80% — for optimizing parameters)
¢ validation set (10% — for hyperparameters)
o test set (10% — don’t touch yet!)
® build and assess architecture
¢ get above chance (simplifying problem, if necessary)

Parallel Nets
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Assessing

Your Deep Learning Project Il

@ split your data
e training set (80% — for optimizing parameters)
¢ validation set (10% — for hyperparameters)
o test set (10% — don’t touch yet!)

® build and assess architecture
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Assessing

Your Deep Learning Project Il

@ split your data
e training set (80% — for optimizing parameters)
¢ validation set (10% — for hyperparameters)
o test set (10% — don’t touch yet!)

® build and assess architecture

¢ get above chance (simplifying problem, if necessary)
¢ do existing performance benchmarks exist?
e if not, use a simple architecture as benchmark

Parallel Nets @ “teamwork makes the dream work” (?)
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Up Next: TensorFlow
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