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MNIST Digits & LeNet-5

LeCun, Boutou, Bengio & Haffner (1998)
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Decp Net ImageNet Classification Error
ILSVRC: 1.4m, 1k object classes

Unit 1

ILSVRC top-5 error on ImageNet
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Krizhevsky, Sutskever & Hinton (2012)

Unit 1

e Max
Max Max pooling
pooling pooling

Numerical Data-driven
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https://github.com/the-deep-learners/nyc-ds-academy/blob/master/notebooks/shallow_net_in_keras.ipynb
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« weight e input layer
e sigmoid neuron e bias e hidden layer
e tanh neuron e cost function e dense/FC layer
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https://github.com/the-deep-learners/nyc-ds-academy/blob/master/notebooks/intermediate_net_in_keras.ipynb
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© © ©® W pata Science Resources — Jo x

& C' @ Secure | https://www.jonkrohn.com/resources/

Unit 2

Open Data Sources

To train a powerful model, the larger the data set, the better -- if its well-organised and open, that's ideal. The
following repositories are standouts that meet all these criteria:

Data.gov (home of >150k US govemment-related datasets),

Goveode, a collection of government open source projects,

the Open Data Stack Exchange, and

\ 4 « this curated list of 'awesome' public datasets

this well-annotated list of data sets for natural language processing

Jon Krohn, Cajoler of Datums

for biomedical and health data specifically, check out:

o this University of Minnesota resource

Home )

o this Medical Data for Machine Learning GitHub repo
Resources
Posts For machine learning models that require a fot of labelled data, check out
Publications
Talks « UC Irvine's repository

« Yahoo's massive 13TB data set comprised of 100 billion user interactions with news items

Academia « Google's image and video data sets
Applications « Luke de Oliveira's Greatest Public Datasets for Al blog post
Quotations « CrowdFlower's Data for Everyone
Contact

Finally, here are extensive pages on importing data from the Web into R, provided by CRAN and MRAN.
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Ideating

Perspectives to approach ideating from:
e Identify a data set = use it to solve a problem

e Identify a problem that you'd like to solve = find an
appropriate data set
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https://github.com/zalandoresearch/fashion-mnist
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e uniform
e normal
e Xavier Glorot

Weight Initialization

[Jupyter demo]
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Stochastic Gradient Descent

e learning rate
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e learning rate

e batch size
e second-order gradient learning
e momentum

NYCDATA SCIENCE
ACADEMY



Unit 3 —
Building a
Deep Net

Theory IlI

Stochastic Gradient Descent

e learning rate
e batch size

e second-order gradient learning

e momentum
e Adam
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Outline

: Unstable Gradients & Overfitting
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Speed of learning: 4 hidden layers
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e vanishing
e exploding

Unstable Gradients
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e L1/L2 regularization

Avoiding Overfitting

(Or, Model Generalization)
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e L1/L2 regularization
e dropout
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(Or, Model Generalization)

Theory IV

e L1/L2 regularization
e dropout
e artificial data set expansion
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Avoiding Overfitting

(Or, Model Generalization)
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Last, But Not Least

e more layers
e max-pooling
o flatten

e batch normalization avoids covariate shift; advantages:

© initialization parameters
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e more layers
e max-pooling
o flatten
e batch normalization avoids covariate shift; advantages:

© initialization parameters
® avoid neuron saturation

Theory IV
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Deep Net LaSt, But NOt LeaSt

e more layers
e max-pooling
o flatten
e batch normalization avoids covariate shift; advantages:

© initialization parameters
® avoid neuron saturation
© regularizing effect

Theory IV
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A Deep Net

@ A Deep Neural Network

Outline

NYCDATA SCIENCE
ACADEMY



Unit 3 —
Building a
Deep Net

Let’s make [intermediate net] deep!

A Deep Net
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https://github.com/the-deep-learners/nyc-ds-academy/blob/master/notebooks/intermediate_net_in_keras.ipynb
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TensorBoard

Outline

@ TensorBoard and the Interpretation of Model Outputs

0
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TensorBoard

TensorBoard

© add callback as in [Deep Net in Keras Jupyter
notebook]
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https://github.com/illustrated-series/deep-learning-illustrated/blob/master/notebooks/deep_net_in_keras_with_tensorboard.ipynb
https://github.com/illustrated-series/deep-learning-illustrated/blob/master/notebooks/deep_net_in_keras_with_tensorboard.ipynb
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TensorBoard

© add callback as in [Deep Net in Keras Jupyter
notebook]

® use Terminal to navigate to your 1ogs directory
® run tensorboard —--logdir=. —-port 6006
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TensorBoard

TensorBoard

© add callback as in [Deep Net in Keras Jupyter
notebook]

® use Terminal to navigate to your 1ogs directory
® run tensorboard —--logdir=. —-port 6006

@ navigate to http://localhost:6006/ in a web
browser
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https://github.com/illustrated-series/deep-learning-illustrated/blob/master/notebooks/deep_net_in_keras_with_tensorboard.ipynb
https://github.com/illustrated-series/deep-learning-illustrated/blob/master/notebooks/deep_net_in_keras_with_tensorboard.ipynb
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